

Dr. Bonnie H. Ferri Professor and Associate Chair School of Electrical and Computer Engineering

Linear Circuits

An introduction to linear electric components and a study of circuits containing such devices.

Bandpass and Notch Filters

Dr. Bonnie H. Ferri Professor and Associate Chair School of Electrical and Computer Engineering

Show schematics and characteristics of notch and bandpass filters

Module 4:

- Sinusoids and Phasors
- Impedance
- AC Circuit Analysis
- Transfer Functions
- Frequency Spectrum
- Frequency Response
- Filtering

Previous Lesson

Introduced lowpass and highpass filters

Lesson Objective

 Introduce characteristics of notch and bandpass filters

Analog Filters

Summary of RC Filters

RLC Lowpass Filter

$$H(\omega) = \frac{1}{(1 - LC\omega^2) + RCj\omega}$$

RLC Bandpass Filter

Example Bandpass Filter

$$H(\omega) = \frac{RCj\omega}{(1 - LC\omega^2) + RCj\omega}$$

Notch RLC Filter

Example Notch Filter

$$H(\omega) = \frac{1 - LC\omega^2}{(1 - LC\omega^2) + RCj\omega}$$

Summary

- Different filter characteristics can be found from RC and RLC circuits
- Bandpass filter passes frequencies in a band
- Notch filter rejects frequencies in a band

Next Lesson

Lab demo filters on the guitar string experiment

