

Linear Circuits

Dr. Bonnie Ferri Professor and Associate Chair School of Electrical and Computer Engineering

An introduction to electric circuit elements and a study of circuits containing such devices.

Dr. Bonnie Ferri Professor and Associate Chair School of Electrical and Computer Engineering

Transient response of an RLC circuit

Module 3: Reactive Circuits

- Sinusoids and Phasors
- Impedance
- Analysis of Sinusoidal Systems
- Transfer Functions
- Frequency Spectrum
- Frequency Response
- Filtering

RLC Circuit Schematic

Lab Demo: RLC Circuit Frequency Response

Summary

- Low R means low damping and high resonant peak
- The Bode plot is generated by a sine sweep
 - Input sinusoids of different frequencies and calculate the gain (A_o/A_i) and phase for each response
 - Compute and plot $20*log_{10}(A_o/A_i)$ vs f
 - Plot phase vs f

Next Lesson

Introduction to filtering

