Georgialnstitute of Technology

Linear Circuits

Nathan V. Parrish PhD Candidate & Graduate Research Assistant School of Electrical and Computer Engineering

An introduction to linear electric circuit elements and a study of circuits containing such devices.

Georgialnstitute of Technology

Transfer Functions

Nathan V. Parrish PhD Candidate & Graduate Research Assistant School of Electrical and Computer Engineering

Understand how linear systems react to inputs of different frequencies.

Previous Lesson

- AC analysis
- Sinusoidal response lab

Module 4: Frequency Analysis

- Sinusoids and phasors
- Impedance
- Analysis of sinusoidal systems
- Transfer functions
- Freqency response
- Low-pass and high-pass filters
- Bandpass and notch filters

Lesson Objectives

- Describe the definition of a transfer function and how they are used
- Plot transfer functions in both linear and logarithmic spaces and interpret the results

Behavior of Sinusoids in Linear Systems

Transfer Function

$$H(f) = \frac{\mathbb{Y}_f}{\mathbb{X}_f} = \frac{Y_f}{X_f} \angle \theta_{y,f} - \theta_{x,f}$$

Example 1: Effect of Frequency

 $v(t) = \cos\left(2\pi(780)t\right)$

$$H(780) = 0.51 - j0.50 = \frac{1}{\sqrt{2}} \left[-\frac{\pi}{4} \right]$$

Example 2: RC

$$H(f) = \frac{1}{1+j2\pi fRC} \quad \text{Let } f_B = \frac{1}{2\pi RC}$$
$$\boxed{H(f) = \frac{1}{1+j(f/f_B)}}$$
$$\boxed{H| = \frac{1}{\sqrt{1+(f/f_B)^2}}}$$
$$\angle H = -\operatorname{atan}(f/f_B)$$

Transfer Function Plots

 v_{s}

Example 3: RLC

Summary

- Introduced the concept of a transfer function
- Showed how to calculate a transfer function for a particular system
- Demonstrated how to graph the magnitude and phase response

Next Lesson

- Time and frequency domain
- Demo with a guitar string to show frequency spectrum

