Georgialnstitute of Technology

Linear Circuits

Nathan V. Parrish PhD Candidate & Graduate Research Assistant School of Electrical and Computer Engineering

An introduction to linear electric circuit elements and a study of circuits containing such devices.

Georgia Institute of Technology

Nathan V. Parrish PhD Candidate & Graduate Research Assistant School of Electrical and Computer Engineering

AC Circuit Analysis

Identify how past techniques apply to impedances in AC circuit analysis.

Previous Lesson

- Impedance and its relationship to phasors
- Impedance in reactive circuits changes with frequency

Module 4: Frequency Analysis

- Sinusoids and phasors
- Impedance
- Analysis of sinusoidal systems
- Transfer functions
- Frequency response
- Low-pass and high-pass filters
- Bandpass and notch filters

Lesson Objectives

- Apply techniques from DC analysis to sinusoidal systems
- Find equivalent impedances for devices in series/parallel
- Use superposition for analysis: particularly for systems with multiple frequencies
- Be able to analyze a system using these techniques

Impedance is Linear

$$\mathbb{V} = \mathbb{I} Z \sim V = I R$$

Impedances in Series

$$Z_{\rm eq} = \sum_i Z_i$$

Impedances in Parallel

Kirchhoff's Laws

Source Transformations

$$\mathbb{V}_{\mathrm{Th}} = \mathbb{I}_{\mathrm{N}} Z_{\mathrm{Th}}$$

Superposition

Valid Impedance Techniques

- Kirchhoff's Laws
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A
- Superposition
- Node-voltage
- Mesh-current
- Thévenin and Norton Equivalent Circuits
- Source Transformations

$$v(t) = \cos\left(2\pi(780)t\right)$$

Summary

- Showed how DC analysis techniques are applied in sinusoidal systems
- Used superposition to analyze a system with multiple frequencies
- Solved an example system using these techniques

Next Lesson

- Demo showing sinusoidal response
- Transfer functions how systems react across different frequencies

