Georgialnstitute of Technology

Linear Circuits

Nathan V. Parrish PhD Candidate & Graduate Research Assistant School of Electrical and Computer Engineering

An introduction to linear electric circuit elements and a study of circuits containing such devices.

Georgialnstitute of Technology

Sinusoids and Phasors

Nathan V. Parrish PhD Candidate & Graduate Research Assistant School of Electrical and Computer Engineering

Review sinusoid properties and describe phasors and how to use them.

Module 4: Frequency Analysis

- Sinusoids and phasors
- Impedance
- Circuit analysis in AC
- Transfer functions
- Frequency response
- High/low-pass filters
- Bandpass/notch filters

Lesson Objectives

- Identify sinusoid properties (amplitude, frequency, angular frequency, period, phase)
- Describe the properties of sinusoids in capacitors and inductors
- Find phasors of sinusoidal functions
- Add sinusoids using phasors

Georgia School of Electrical and Computer Engineering

Sinusoidal Currents and Voltages

 $v(t) = V_m \cos(\omega t + \theta)$

Peak value: V_m Period: T (s) Frequency: $f = \frac{1}{T}$ (Hz) Angular frequency: $\omega = 2\pi f$ (rad/s) Phase angle: $\theta = -2\pi \frac{t_p}{T}$

Sinusoids and Capacitors


```
i_c(t) = CV_m\omega\cos\left(\omega t + \theta + \frac{\pi}{2}\right)
```


Phasors

Georgia School of Electrical and Computer Engineering College of Engineering

Adding Sinusoids with Phasors

 $v_1 = 7\cos(120\pi t + 30^\circ) \iff 7\angle 30^\circ$

$$v_2 = 3\cos(120\pi t - 60^\circ) \iff 3 \angle -60^\circ$$

$$7 \angle 30^{\circ} + 3 \angle -60^{\circ} = 7.62 \angle 6.8^{\circ}$$

$$v_1 + v_2 = 7.62\cos(120\pi t + 6.8^\circ)$$

Comments on Phasors

- Cannot compare phasors with different frequencies
- Multiplying phasors does not equate to multiplying functions

- Reviewed sinusoid properties
- Identified sinusoid behavior in linear devices
- Found phasors and used them to add sinusoids

Next Lesson

Define impedance – a property describing the sinusoidal behavior of linear devices.

