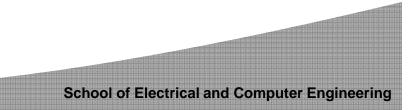


Linear Circuits

Nathan V. Parrish PhD Candidate & Graduate Research Assistant School of Electrical and Computer Engineering

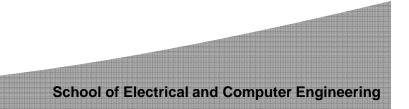
An introduction to linear electric circuit elements and a study of circuits containing such devices.



RLC Circuits Part 1

Nathan V. Parrish PhD Candidate & Graduate Research Assistant School of Electrical and Computer Engineering

•Use differential equations to show the behavior of an RLC circuit as the system changes.



Previous Lesson

Learned about solving second-order differential equations

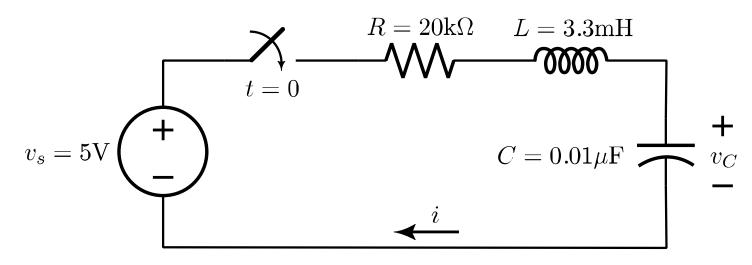
Module 3: Reactive Circuits

- Capacitors
- Inductors
- First-order differential equations
- RC Circuits
- RL Circuits
- Second-order differential equations
- RLC Circuits

Lesson Objectives

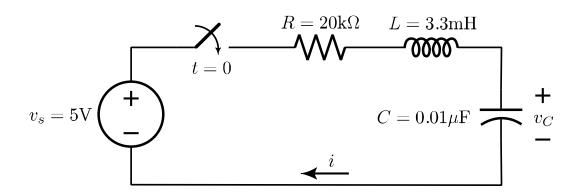
- Generate a second-order differential equation from a RLC circuit
- Identify initial and final conditions
- Solve the differential equation
- Recognize if a system is underdamped/overdamped

Example 1: Initial and Final Conditions



$$v_C(0^-) = 0$$

Example 1: Differential Equation



$$LC\frac{d^2v_C}{dt^2} + RC\frac{dv_C}{dt} + v_C = v_s$$
$$\frac{d^2v_C}{dt^2} + \frac{R}{L}\frac{dv_C}{dt} + \frac{1}{LC}v_C = \frac{v_s}{LC}$$
$$\frac{d^2y}{dt^2} + a_1\frac{dy}{dt} + a_2y = K$$

$$v_s = v_R + v_L + v_C$$

 $v_R = iR$ $v_L = L \frac{di}{dt}$ $i = C \frac{dv_c}{dt}$

Example 1: Transient

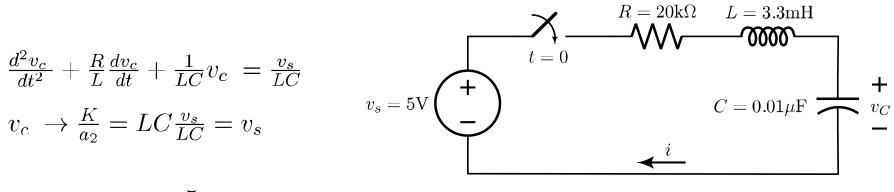
$$\frac{d^2 v_c}{dt^2} + \frac{R}{L} \frac{dv_c}{dt} + \frac{1}{LC} v_c = \frac{v_s}{LC}$$
$$\frac{d^2 v_c}{dt^2} + 6.06e6 \frac{dv_c}{dt} + 30.3e9 v_c = 151.5e9$$

Characteristic Equation:
$$s^2 + 6.06e6 \ s + 30.3e9 = 0$$

Roots: $-5.00e3 \ -6.06e6$

$$v_{c, t} = K_1 e^{-5.00 \text{e}3t} + K_2 e^{-6.06 \text{e}6t}$$

Example 1: Steady State



$$v_{c, \, s} = 5$$

Example 1: Solving for Constants

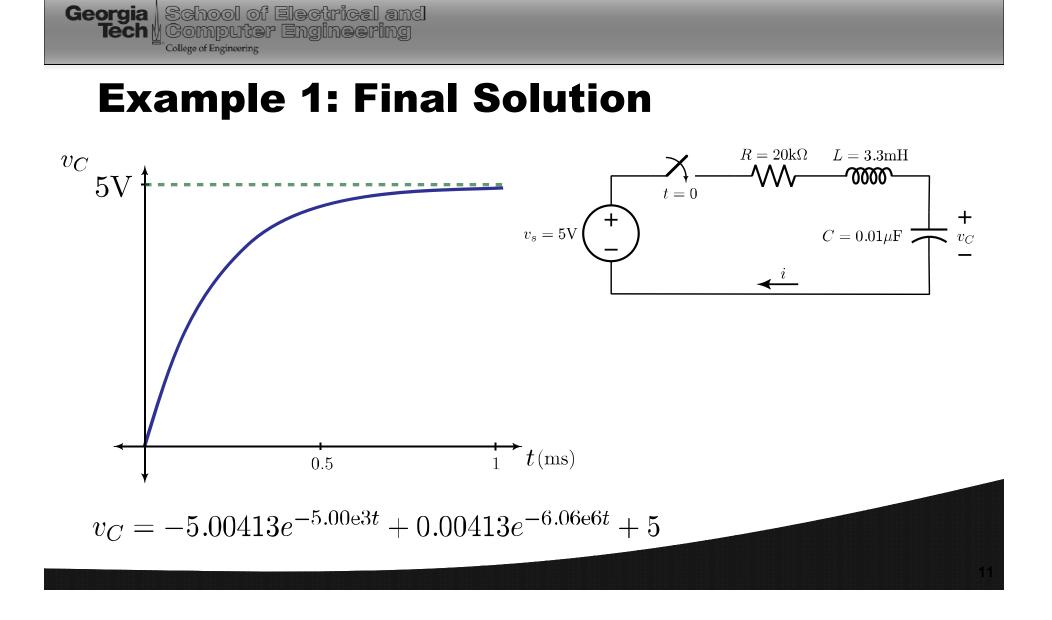
$$v_{c} = v_{c,t} + v_{c,s}$$

$$v_{c} = K_{1}e^{-5.00e3t} + K_{2}e^{-6.06e6t} + 5$$

$$v_{s} = 5V + C = 0.01\mu F + C = 0$$

$v_C(0^-) = v_C(0) = 0$	$i(0^-) = i(0) = 0$
$K_1 + K_2 + 5 = 0$	$i = C rac{dv_C}{dt}$
	$-50\mathrm{e}(-6)K_1 - 60.6\mathrm{e}(-3)K_2 = 0$

$$K_1 = -5.00413$$
 $K_2 = 0.00413$



- Looked at an overdamped case
- Identified initial and final conditions
- Found and solved representative differential equation
- Plotted the results

Next Lesson

Consider an underdamped example

