

Linear Circuits

Dr. Bonnie H. Ferri Professor and Associate Chair School of Electrical and Computer Engineering

An introduction to linear electric components and a study of circuits containing such devices.

Dr. Bonnie H. Ferri Professor and Associate Chair School of Electrical and Computer Engineering

Recognize types of second-order responses

Previous Lessons

 Solutions to first-order differential equations and application to RC and RL circuits

Module 3: Reactive Circuits

- Capacitance
- Inductance
- First-Order Differential Equations
- RC and RL Circuits
- Second-Order Differential Equations
- RLC Circuits
- Applications

Lesson Objectives

Examine second-order differential equations with a constant input:

- Determine the steady-state solution
- Determine the type of transient response
- Recognize the characteristics of the plot of the solution

Ordinary Differential Equations

 ODE: Include functions of variables and their derivatives

$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 4y = f(t)$$

Models of Physical Systems

Solutions to Second-Order Differential Equation $d^2 y = dy$

$$\frac{d^2 y}{dt^2} + a_1 \frac{dy}{dt} + a_2 y = K, \quad y(0) \text{ and } \left. \frac{dy}{dt} \right|_{t=0}$$

Solution: y(t) = steady-state + transient

TRANSIENT: Three possible forms depending on roots of $(s^2+a_1s+a_2)=0$.

Transient Response

 $(s^2+a_1s+a_2)=0.$

OVERDAMPED: ((real and distinct roots, r_1 and r_2) $K_1 e^{r_1 t} + K_2 e^{r_2 t}$

CRITICALLY DAMPED: ((real and equal roots, r and r)

 $K_1 e^{rt} + K_2 t e^{rt}$

UNDERDAMPED: ((complex roots, *a*±*jb*)

 $Ke^{at}\sin(bt+\phi)$

Sample Problems

Sample Problems

Summary

- Examined generic 2nd order differential equation
 - Vibratory systems, RLC circuits
- Showed steady-state solution
- Showed generic transient solutions to underdamped and overdamped responses
- Showed characteristic plots of under damped and overdamped responses to a constant input applied at t=0

Next Lesson

Demonstrate RLC circuit equations and responses

