Georgialnstitute of Technology

Linear Circuits

Nathan V. Parrish PhD Candidate & Graduate Research Assistant School of Electrical and Computer Engineering

An introduction to linear electric circuit elements and a study of circuits containing such devices.

Georgialnstitute of Technology

Capacitors

Nathan V. Parrish PhD Candidate & Graduate Research Assistant School of Electrical and Computer Engineering

- •Present how capacitors work in a system
- •Identify behavior in DC circuits

•Graphically represent the relationships between current, voltage, power, and energy

Previous Class

Behavior of isolated capacitors

Meaning of capacitance

Module 3: Reactive Circuits

- Capacitors
- Inductors
- First-order differential equations
- RC Circuits
- RL Circuits
- Second-order differential equations
- RLC Circuits

Lesson Objectives

- Analyzing capacitors in series/parallel
- Analyze DC circuits with capacitors
- Calculate energy in a capacitor
- Sketch current/voltage/power/energy curves

Capacitors in Parallel

Capacitors in Series

Behavior in DC Circuits

Georgia School of Electrical and Computer Engineering

Stored Energy

$$p(t) = i(t)v(t) \qquad w$$

$$t) = \int_{t_0}^t p(\tau) d\tau + w(t_0) \qquad i =$$

$$w = \int_{t_0}^t Cv(\tau) \frac{dv(\tau)}{d\tau} d\tau + w(t_0)$$
$$w = \int_{v(t_0)}^{v(t)} Cv dv + w(t_0)$$

$$w = \frac{1}{2}Cv^2(t)$$

 $C\frac{dv}{dt}$

Georgia School of Electrical and Tech Computer Engineering College of Engineering

Graphs

Summary

- Calculated capacitance for capacitors in parallel/series configurations
- Identified how capacitors in DC circuits behave like open circuits
- Derived an equation for the energy stored by a capacitor as an electric field
- Showed graphically the relationships between voltage/current/power/energy in capacitors

Next Class

- Considerations for working with real capacitors
- Magnetic fields and current
- Inductance

