Georgialnstitute of Technology

Linear Circuits

Nathan V. Parrish PhD Candidate & Graduate Research Assistant School of Electrical and Computer Engineering

An introduction to linear electric circuit elements and a study of circuits containing such devices.

Georgialnstitute of Technology

Capacitance

Nathan V. Parrish PhD Candidate & Graduate Research Assistant School of Electrical and Computer Engineering

Describe the behavior of capacitors by calculating:
the charge stored on the capacitor plates
the current flowing through the capacitor
the voltage across the capacitor
the capacitance of the capacitor

School of Electrical and Computer Engineering

Previous Class

- Finished resistive circuits
- Overview of module 3

Module 3: Reactive Circuits

- Capacitors
- Inductors
- First-order differential equations
- RC Circuits
- RL Circuits
- Second-order differential equations
- RLC Circuits

Lesson Objectives

- Describe the construction of a capacitor
- Find charge stored on a capacitor
- Find the current through a capacitor
- Find the voltage across a capacitor
- Calculate the capacitance of a capacitor
- Explain how current flows "through" a capacitor

Capacitors

i

Capacitors and Charge

Current and Voltage

Capacitance	
Units	farad (F)
Variable	C

$$i = C \frac{dv}{dt}$$
 $v = \frac{1}{C} \int_{t_0}^t i(\tau) d\tau + v(t_0)$

Calculating Capacitance

Permittivity of Common Materials

Material	Approximate ε _r (or <i>k</i>)
Air	1
Teflon	2.1
Paper	3.9
Glass	4.7
Rubber	7.0
Silicon	11.7
Water	78.5 (varies by T)

Current "Through" A Capacitor

Summary

- Identified how capacitors work
- Calculated charge stored on a capacitor
- Identified the relationship between current and voltage on a capacitor
- Calculated capacitance
- Explained how current flows "through" a capacitor

Next Class

Capacitors as circuit devices

Behavior of capacitors in a system

