Georgialnstitute of Technology

Linear Circuits

An introduction to electric circuit elements and a study of circuits containing such devices.

Georgialnstitute of Technology

Module 2 Resistive Circuits Wrap Up

Dr. Bonnie Ferri Professor and Associate Chair School of Electrical and Computer Engineering

Summary of Resistive Circuits Module

School of Electrical and Computer Engineering

Georgia School of Electrical and Computer Engineering

Important Concepts and Skills

RESISTANCE

• Be able to reduce resistive networks to a single equivalent resistance using parallel and series connections

KIRCHOFF'S LAWS

- Understand Kirchoff's Voltage Law (KVL) and Kirchoff's Current Law (KCL)
- Be able to apply KVL and KCL to circuits to obtain equations
- Be able to compute voltages and currents from the voltage divider law and the current divider laws
- Understand superposition and its application in circuits to find specific voltages and currents

Important Concepts and Skills

PHYSICAL CIRCUITS AND COMPONENTS

- Given a color chart, be able to identify physical resistor values and tolerances
- Understand the purpose of a protoboard (breadboard) and its basic operation
- Understand how current can be measured in a circuit using the voltage divider law

SUPERPOSITION

• Given a circuit with multiple sources, be able to use the Superposition Principle to solve for circuit voltages and currents

Important Concepts and Skills

• SYSTEMATIC SOLUTION METHODS

- Have a basic understanding of mesh analysis, node analysis, Thévenin equivalent and Norton equivalent circuits and when to use one versus another
- Be able to solve for specific voltages and currents in a given circuit

MAXIMUM POWER TRANSFER

• Be able to compute the load resistance that maximizes the power

Georgia School of Electrical and Computer Engineering

Important Concepts and Skills

WYE AND DELTA CIRCUITS

- Know the transformation
- Understand that these configurations may be used in different applications, such as 3 phase circuits

APPLICATIONS: RESISTORS IN SENSORS

- Know examples of resistors that vary with physical quantities
- Understand how a potentiometer is used to measure position or angle
- Know when a Wheatstone Bridge is used in a practical application
- Be able to write equations for a Wheatstone Bridge

Georgia School of Electrical and Computer Engineering College of Engineering

Concept Map

