Georgialnstitute of Technology

Linear Circuits

Nathan V. Parrish PhD Candidate & Graduate Research Assistant School of Electrical and Computer Engineering

An introduction to linear electric circuit elements and a study of circuits containing such devices.

Georgia Institute of Technology

Maximum Power Transfer

Nathan V. Parrish PhD Candidate & Graduate Research Assistant School of Electrical and Computer Engineering

An introduction to linear electric circuit elements and a study of circuits containing such devices.

Previous Lesson

- Obtaining Circuit Equations
 - Node-voltage
 - Mesh-current
 - Thévenin equivalent
 - Norton equivalent

Module 2: Resistive Circuits

- Resistance
- Kirchhoff's Laws
- Resistors
- Superposition
- Systematic Solution Methods
- Maximum Power Transfer
- Wye-Delta and Wheatstone Bridge
- Application: Sensors

Lesson Objectives

- Find the load resistance that gives maximum power transfer to the load
- Calculate this power consumed by the load resistor giving maximum power transfer

Two-Terminal Linear Circuits

Power Equations for Resistors

Load Resistance

Georgia Tech School of Electrical and Computer Engineering College of Engineering

Maximum Power Transfer

Summary

- Specified power equations for resistors
- Matched load resistance to system resistance for maximum power transfer
- Specified equation for maximum power transfer

Next Lesson

Wye-Delta Transformations

• Wheatstone Bridge

