Georgialnstitute of Technology

Linear Circuits

Dr. Bonnie Ferri Professor and Associate Chair School of Electrical and Computer Engineering

An introduction to linear electric circuit elements and a study of circuits containing such devices.

Georgialnstitute of Technology

Systematic Solution Methods: Part 2

Dr. Bonnie Ferri Professor and Associate Chair School of Electrical and Computer Engineering

Introduce several ways of obtaining circuit equations.

Module 2: Resistive Circuits

- Resistance
- Kirchhoff's Laws
- Resistors
- Superposition
- Systematic Solution Methods
- Maximum Power Transfer
- Application: Sensors

Lesson Objective

- Demonstrate
 - Thévenin equivalent and Norton equivalent circuits
 - Source transformations

Georgia School of Electrical and Tech Computer Engineering College of Engineering

Systematic solution Methods

Method	Summary	When to Apply
Mesh Analysis	KVL to obtain simultaneous equations for currents	Multiple currents are neededCurrent sources are present
Node Analysis	KCL to obtain simultaneous equations for voltages	Multiple voltages are neededVoltage sources are present
Thévenin and Norton Equivalent Circuits	Simple equivalent circuits, source transformations	 Intermediate values not important; only output voltage or current

Thévenin Equivalent

Replace circuit with equivalent resistance and voltage source

Thévenin Equivalent Circuit

- \mathbf{v}_{Th} : open circuit across a-b and find $v_{ab} = \mathbf{v}_{Th}$
- i_{sc} : short circuit across a-b and find i_{sc}

• R_{Th} : circuit resistance with voltage sources shorted and current sources open circuited (when no dependent sources are present)

$$v_{Th} = R_{Th} i_{sc}$$

Thévenin Equivalent Example

Georgia School of Electrical and Tech Computer Engineering College of Engineering

Norton Equivalent Circuit

Thévenin equivalent circuit

Norton equivalent circuit

Source Transformation: these configurations are interchangeable in a circuit

Source Transformation Example

Georgia School of Electrical and Computer Engineering College of Engineering

Summary

- Mesh and node analysis
 - Systematic ways to find independent simultaneous equations
- Thévenin and Norton methods
 - Replace most of the circuit with a simple equivalent circuit
 - Source transformations
- Extra worked problems are given on these methods

Next Lesson

- Maximum Power Transfer
 - Uses Thévenin equivalent circuit to find the load to maximize power delivered

