Georgialnstitute of Technology

Linear Circuits

Dr. Bonnie Ferri Professor and Associate Chair School of Electrical and Computer Engineering

An introduction to linear electric circuit elements and a study of circuits containing such devices.

Georgialnstitute of Technology

Systematic Solution Methods: Part 1

Dr. Bonnie Ferri Professor and Associate Chair School of Electrical and Computer Engineering

Introduce several ways of obtaining circuit equations.

Module 2: Resistive Circuits

- Resistance
- Kirchhoff's Laws
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A
- Resistors
- Superposition
- Systematic Solution Methods
- Maximum Power Transfer
- Applications: Sensors

Previous Lesson

 Demonstrated the superposition principle for circuits with multiple sources

Lesson Objective

- Introduce
 - Mesh analysis
 - Node analysis
 - Thévenin equivalent circuit
 - Norton equivalent circuit

Physical Behavior

- Ohm's Law
 - V = iR
- KVL
 - sum of all voltages around any loop = 0
- KCL
 KCL
 - sum of all currents out of any node = 0

Georgia School of Electrical and Computer Engineering College of Engineering

Systematic Ways to Solve Circuit Problems

Method	Summary
Mesh Analysis	Systematic KVL to obtain simultaneous equations for currents
Node Analysis	Systematic KCL to obtain simultaneous equations for voltages
Thévenin and Norton Equivalent Circuits	 Reduce circuit to smaller equivalent Source transformations using graphical method

Mesh Analysis

- 1. Define mesh currents, one for each non-inclusive loop
- 2. Do KVL around each loop

Node Analysis

- 1. Select a ground node
- 2. Define node voltages for every node connected to 3 or more elements
- 3. Do KCL at every node

Georgia School of Electrical and Computer Engineering College of Engineering

Summary

Method	Summary	When to Apply
Mesh Analysis	Systematic KVL, simultaneous equations for currents	Multiple currents are neededCurrent sources are present
Node Analysis	Systematic KCL, simultaneous equations for voltages	 Multiple voltages are needed Voltage sources are present
Thévenin and Norton Equivalent Circuits	Simple equivalent circuits, source transformations	 Intermediate values not important; only output voltage or current

Next Lesson

- Thévenin equivalent circuit and Norton equivalent circuit methods and examples
- Extra worked problems are available for these two lessons

