Georgia Institute of Technology

Circuits & Electronics

Nathan V. Parrish PhD Candidate & Graduate Research Assistant School of Electrical and Computer Engineering

> An introduction to electric circuit elements and electronic devices, and a study of circuits containing such devices. Both analog and digital systems are considered.

Georgia Institute of Technology

Linearity

Nathan V. Parrish PhD Candidate & Graduate Research Assistant School of Electrical and Computer Engineering

•Describe linearity, superposition, and homogeneity

Previous Lesson

- Identified how Ohm's Law and Kirchhoff's Laws apply to resistors
- Learned how to combine parallel/series resistors
- Used laws to generate equations to analyze some simple circuits
- Multimeter and resistor labs

Module 2: Resistive Circuits

- Resistance
- Kirchhoff's Laws
- Resistors
- Superposition
- Systematic Solution Methods
- Maximum Power Transfer
- Wye-Delta and Wheatstone Bridge
- Application: Sensors

Lesson Objectives

- Define linearity, superposition, and homogeneity
- Identify if a given function exhibits superposition or homogeneity

Linear Circuits

Why is this course called *linear* circuits?
What does the linear mean?

Georgia School of Electrical and Computer Engineering College of Engineering

Linearity Defined

Georgia School of Electrical and Computer Engineering College of Engineering

Ohm's Law: Linear

Georgia School of Electrical and Tech Computer Engineering College of Engineering

Examples and Counterexamples

Linear	Non-Linear
f(x) = 0	f(x) = x + c
f(x) = kx	$f(x) = x^2$
$f(x(t)) = \frac{dx(t)}{dt}$	$f(x) = \sin(x)$
$f(x(t)) = \int_{a}^{b} x(t) dt$	$f(x(t)) = \int x(t)dt$

Summary

- Introduced linear operators (superposition and homogeneity)
- Identified if an operator is linear
- Used linear operators to generate new linear operators

Next Lesson

Apply these principles to circuit analysis

