#### Georgialnstitute of Technology



# **Linear Circuits**

Nathan V. Parrish PhD Candidate & Graduate Research Assistant School of Electrical and Computer Engineering

An introduction to linear electric circuit elements and a study of circuits containing such devices.



# Georgia Institute of Technology



# Resistors

- Introduce resistors as a circuit element
- •Consider resistors in series and parallel
- •Calculate equivalent resistance by combining parallel/series





#### **Previous Class**

- Ohm's Law current/voltage relationship within an element
- Kirchhoff's Laws relationships between elements in a circuit





## **Module 2: Resistive Circuits**

- Resistance
- Kirchhoff's Laws
- Resistors
- Superposition
- Obtaining Circuit Equations
- Maximum Power Transfer
- Wheatstone Bridge





## **Learning Objectives**

- Apply Ohm's Law and Kirchhoff's Laws to simple resistive circuits
- Calculate an equivalent resistance of resistors in parallel/series
- Find equivalent resistance through successive application of combining parallel and series resistors



#### **Resistors**

2

v

v = iR



Georgia School of Electrical and Computer Engineering College of Engineering

#### Review



Georgia School of Electrical and Tech Computer Engineering College of Engineering

#### **Resistors in Series**





Georgia Tech School of Electrical and Computer Engineering College of Engineering

#### **Voltage Divider**





 $+ v_2 -$ 



### **Current Divider**



| i                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------|
| $v = iR = \frac{1}{G_1 + G_2}$                                                                                                        |
| $i_1 = \frac{v}{R_1} = vG_1 = \frac{G_1}{G_1 + G_2}i$                                                                                 |
| $\frac{G_1}{G_1 + G_2} = \frac{\frac{1}{R_1}}{\frac{1}{R_1} + \frac{1}{R_2}} = \frac{1}{1 + \frac{R_1}{R_2}} = \frac{R_2}{R_2 + R_1}$ |
|                                                                                                                                       |



#### Example







### Summary

- Introduced to resistors as a circuit element
- Combine series/parallel resistors
- Found an equivalent resistance using successive application of series/parallel resistance





#### **Next Class**

#### • Virtual lab: behavior of real resistors

Superposition

