Georgialnstitute of Technology

Linear Circuits

Nathan V. Parrish PhD Candidate & Graduate Research Assistant School of Electrical and Computer Engineering

An introduction to linear electric circuit elements and a study of circuits containing such devices.

Georgialnstitute of Technology

Kirchhoff's Laws

Nathan V. Parrish PhD Candidate & Graduate Research Assistant School of Electrical and Computer Engineering

•Introduce Kirchhoff's Voltage Law (KVL) and apply to parallel

circuits

- •Introduce Kirchhoff's Current Law (KCL) and apply to series circuits
- •Use Kirchhoff's Laws to solve a simple circuit

School of Electrical and Computer Engineering

Previous Class

- Introduced Ohm's Law
- Introduced Resistance
- Calculated Resistance
- Equations for behavior within a device

Module 2: Resistive Circuits

- Resistance and Ohm's Law
- Kirchhoff's Laws
- Resistors
- Superposition
- Obtaining Circuit Equations
- Maximum Power Transfer
- Wye-Delta and Wheatstone Bridge

Lesson Objectives

- Describe KVL and KCL
- Describe the voltage relationship of parallel elements
- Describe the current relationship of series elements
- Use Kirchhoff's Laws to find unknown values in a simple circuit

Kirchhoff's Voltage Law (KVL)

Georgia School of Electrical and Tech Computer Engineering College of Engineering

KVL and Parallel Circuits

Kirchhoff's Current Law (KCL)

$$|F| = \$_{e} 9 \frac{g_{1}q_{2}}{r^{2}} 10 \$_{e} \left[\frac{|\mathsf{Nm1}|}{C} \frac{10}{C} \frac{9}{r^{2}} \frac{10}{10^{-4}} \frac{9}{m^{2}} 10^{9} \$ \frac{\mathsf{Nm}_{2}}{\mathsf{C}^{2}} \right] 10^{9} \$ \frac{\mathsf{Nm}_{2}}{\mathsf{C}^{2}} [\mathsf{MN}]$$

KCL and Series Circuits

$$i_A = i_B$$

Solving Values in Circuits

Summary

- Introduced KVL and KCL
- Applied KVL to parallel elements
- Applied KCL to series elements
- Gave a justification for KCL
- Solved a simple circuit using Kirchhoff's Laws

Next Class

- Introduce resistors devices specifically designed to inhibit current flow
- Apply Ohm's Law and Kirchhoff's Law to resistor circuits

