Georgialnstitute of Technology

Linear Circuits

Nathan V. Parrish PhD Candidate & Graduate Research Assistant School of Electrical and Computer Engineering

An introduction to linear electric circuit elements and a study of circuits containing such devices.

Georgialnstitute of Technology

Power and Energy

Nathan V. Parrish PhD Candidate & Graduate Research Assistant School of Electrical and Computer Engineering

- •Calculate power and energy
- •Describe the difference between power and energy
- •Use conservation of energy to find unknown energy
- •Use power to calculate current or voltage

School of Electrical and Computer Engineering

Previous Class

Voltage – electrical potential

Battery charging and discharging

Module 1: Background

- Charge
- Current
- Voltage
- Power
- Energy
- Circuit Introduction

Lesson Objectives

- Calculate power from energy function
- Calculate energy from a power function
- Use conservation of energy to find power of an unknown device
- Calculate power from voltage and current
- Find a voltage or a current for a device with a known power

Georgia School of Electrical and Computer Engineering College of Engineering

Power

$$p = \frac{dw}{dt} = \frac{dw}{dq}\frac{dq}{dt} = vi$$

Energy	
Units	joule (J)
Variable	w
Power	
Units	watt (W= $\frac{J}{s}$)
Variable	p

$$w = \int_{t_0}^t p(\tau) d\tau + w(t_0)$$

Instantaneous Change

Charging for Power

You run a power company. Do you charge customers for power or energy? Why?

Georgia School of Electrical and Tech Computer Engineering College of Engineering

Conservation of Energy

Reference Direction

$$p = iv$$
 $p = -iv$

Using Power for Analysis

Summary

- Described the relationship between power and energy and how to calculate them
- Described how voltage and current relate to power
- Presented a derivation for conservation of power and how this property is used in analysis
- Solved first simple analysis problem

Next Lesson

Introduce circuit diagrams

