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More NP-Complete Problems

NP-Hard Problems
Tautology Problem

Node Cover
Knapsack
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Next Steps

We can now reduce 3-SAT to a large 
number of problems, either directly or 
indirectly.
Each reduction must be polytime.
Usually we focus on length of the 

output from the transducer, because 
the construction is easy.
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Next Steps – (2)

Another essential part of an NP-
completeness proof is showing the 
problem is in NP.
Sometimes, we can only show a 

problem NP-hard = “if the problem is in 
P, then P = NP,” but the problem may 
not be in NP.
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Example: NP-Hard Problem

The Tautology Problem is: given a 
Boolean expression, is it satisfied by all
truth assignments?
 Example: x + -x + yz

Not obviously in NP, but it’s 
complement is.
 Guess a truth assignment; accept if that 

assignment doesn’t satisfy the expression.



5

Co-NP

A problem/language whose complement is 
in NP is said to be in Co-NP.
Note: P is closed under complementation.
Thus, P  Co-NP.
Also, if P = NP, then P = NP = Co-NP.
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Tautology is NP-Hard

While we can’t prove Tautology is in 
NP, we can prove it is NP-hard.
Suppose we had a polytime algorithm 

for Tautology.
Take any Boolean expression E and 

convert it to NOT(E).
 Obviously linear time.
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Tautology is NP-Hard – (2)

E is satisfiable if and only NOT(E) is not
a tautology.
Use the hypothetical polytime algorithm 

for Tautology to test if NOT(E) is a 
tautology.
Say “yes, E is in SAT” if NOT(E) is not a 

tautology and say “no” otherwise.
Then SAT would be in P, and P = NP.
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The Node Cover Problem

Given a graph G, we say N is a node 
cover for G if every edge of G has at 
least one end in N.
The problem Node Cover is: given a 

graph G and a “budget” k, does G have 
a node cover of k or fewer nodes?
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Example: Node Cover

A C

E F

DB

One possible node cover
of size 3: {B, C, E}
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NP-Completeness of Node Cover

Reduction from 3-SAT.
For each clause (X+Y+Z) construct a 

“column” of three nodes, all connected 
by vertical edges.
Add a horizontal edge between nodes 

that represent any variable and its 
negation.
Budget = twice the number of clauses.
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Example: The Reduction to 
Node Cover

(x + y + z)(-x + -y + -z)(x + -y +z)(-x + y + -z)

x

z

y

-x

-z

-y

x

z

-y

-x

-z

y

Budget
= 8
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Example: Reduction – (2)

A node cover must have at least two 
nodes from every column, or some 
vertical edge is not covered.
Since the budget is twice the number 

of columns, there must be exactly two 
nodes in the cover from each column.
Satisfying assignment corresponds to 

the node in each column not selected.
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Example: Reduction – (3)
(x + y + z)(-x + -y + -z)(x + -y +z)(-x + y + -z)
Truth assignment: x = y = T; z = F

x

z

y

-x

-z

-y

x

z

-y

-x

-z

y

Pick a true node in each column
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Example: Reduction – (4)
(x + y + z)(-x + -y + -z)(x + -y +z)(-x + y + -z)
Truth assignment: x = y = T; z = F

x

z

y

-x

-z

-y

x

z

-y

-x

-z

y

The other nodes form a node cover
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Proof That the Reduction Works

 The reduction is clearly polytime.
 Need to show: If we construct from 3-

SAT instance E a graph G and a 
budget k, then G has a node cover of 
size < k if and only if E is satisfiable.
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Proof: If

Suppose we have a satisfying 
assignment A for E.
For each clause of E, pick one of its 

three literals that A makes true.
Put in the node cover the two nodes for 

that clause that do not correspond to 
the selected literal.
Total = k nodes – meets budget.
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Proof: If – (2)

The selected nodes cover all vertical edges.
Why?  Any two nodes for a clause cover the 

triangle of vertical edges for that clause.

Horizontal edges are also covered.
 A horizontal edge connects nodes for some x 

and -x.
 One is false in A and therefore its node must be 

selected for the node cover.
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Proof: Only If

Suppose G has a node cover with at 
most k nodes.
One node cannot cover the vertical 

edges of any column, so each column 
has exactly 2 nodes in the cover.
Construct a satisfying assignment for E 

by making true the literal for any node 
not in the node cover.
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Proof: Only If – (2)

Worry: What if there are unselected 
nodes corresponding to both x and -x?
 Then we would not have a truth 

assignment.

But there is a horizontal edge between 
these nodes.
Thus, at least one is in the node cover.
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The Knapsack Problem

We shall prove NP-complete a version 
of Knapsack with a target:
 Given a list L of integers and a target k, is 

there a subset of L whose sum is exactly k?

Later, we’ll reduce this version of 
Knapsack to our earlier one: given an 
integer list L, can we divide it into two 
equal parts?
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Knapsack-With-Target is in NP

Guess a subset of the list L.
Add ‘em up.
Accept if the sum is k.
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Polytime Reduction of 3-SAT 
to Knapsack-With-Target

Given 3-SAT instance E, we need to 
construct a list L and a target k.
Suppose E has c clauses and v 

variables.
L will have base-32 integers of length 

c+v, and there will be 3c+2v of them.
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Picture of Integers for Literals

cv
i

1

1 in i-th position
if this integer is
for xi or -xi.

1    1  1        1    11

1’s in all positions
such that this literal
makes the clause true.

All other positions are 0.
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Pictures of Integers for Clauses

5

6

7

i

For the i-th clause
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Example: Base-32 Integers

(x + y + z)(x + -y + -z)
c = 2; v = 3.
Assume x, y, z are variables 1, 2, 3, 

respectively.
Clauses are 1, 2 in order given.
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Example: (x + y + z)(x + -y + -z)

For x:  00111
For -x: 00100
For y:  01001
For -y: 01010
For z:  10001
For -z: 10010

For first clause: 
00005, 00006, 
00007

For second clause: 
00050, 00060, 
00070
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The Target

k = 8(1+32+322+…+32c-1) + 
32c(1+32+322+…+32v-1)
That is, 8 for the position of each clause 

and 1 for the position of each variable.
 k = (11…188…8)32.

Key Point: Base-32 is high enough that 
there can be no carries between 
positions.
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Key Point: Details

Among all the integers, the sum of 
digits in the position for a variable is 2.
And for a clause, it is 1+1+1+5+6+7 = 

21.
 1’s for the three literals in the clause; 5, 6, 

and 7 for the integers for that clause.

Thus, the target must be met on a 
position-by-position basis.
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Key Point: Concluded

Thus, if a set of integers matches the 
target, it must include exactly one of 
the integers for x and -x.
For each clause, at least one of the 

integers for literals must have a 1 there, 
so we can choose either 5, 6, or 7 to 
make 8 in that position.
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Proof the Reduction Works

Each integer can be constructed from 
the 3-SAT instance E in time 
proportional to its length.
 Thus, reduction is O(n2).

If E is satisfiable, take a satisfying 
assignment A.
Pick integers for those literals that A 

makes true.
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Proof the Reduction Works – (2)

The selected integers sum to between 
1 and 3 in the digit for each clause.
For each clause, choose the integer 

with 5, 6, or 7 in that digit to make a 
sum of 8.
These selected integers sum to exactly 

the target.
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Proof: Converse

We must also show that a sum of 
integers equal to the target k implies E is 
satisfiable.
In each digit for a variable x, either the 

integer for x or the digit for -x, but not 
both is selected.
Let truth assignment A make this literal 

true.
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Proof: Converse – (2)

In the digits for the clauses, a sum of 8 
can only be achieved if among the 
integers for the variables, there is at 
least one 1 in that digit.
Thus, truth assignment A makes each 

clause true, so it satisfies E.
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The Partition-Knapsack Problem

This problem is what we originally 
referred to as “knapsack.”
Given a list of integers L, can we 

partition it into two disjoint sets whose 
sums are equal?
Partition-Knapsack is NP-complete; 

reduction from Knapsack-With-Target.
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Reduction of Knapsack-With-
Target to Partition-Knapsack

Given instance (L, k) of Knapsack-With-
Target, compute the sum s of all the 
integers in L.
 Linear in input size.

Output is L followed by two integers: 2k 
and s.
Example: L = 3, 4, 5, 6; k = 7.
 Partition-Knapsack instance = 3, 4, 5, 6, 14, 18.

Solution Solution
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Proof That Reduction Works

The sum of all integers in the output 
instance is 2(s+k).
 Thus, the two partitions must each sum to 

s+k.

If the input instance has a subset of L 
that sums to k, then pick it plus the 
integer s to solve the output instance.
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Proof: Converse

Suppose the output instance of Partition-
Knapsack has a solution.
The integers s and 2k cannot be in the 

same partition.
 Because their sum is more than half 2(s+k).

Thus, the subset of L that is in the 
partition with s sums to k.
 Thus, it solves the input instance.


