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Intractable Problems

Time-Bounded Turing Machines
Classes P and NP

Polynomial-Time Reductions
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Time-Bounded TM’s

A Turing machine that, given an input 
of length n, always halts within T(n) 
moves is said to be T(n)-time bounded.
 The TM can be multitape.
 Sometimes, it can be nondeterministic.
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The class P

If a DTM M is T(n)-time bounded for 
some polynomial T(n), then we say M is 
polynomial-time (“polytime ”) bounded.
And L(M) is said to be in the class P.
Important point: when we talk of P, it 

doesn’t matter whether we mean “by a 
computer” or “by a TM” (next slide).
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Polynomial Equivalence of 
Computers and TM’s

A multitape TM can simulate a 
computer that runs for time O(T(n)) in 
at most O(T2(n)) of its own steps.
If T(n) is a polynomial, so is T2(n).
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Examples of Problems in P

Is w in L(G), for a given CFG G?
 Input = w.
 Use CYK algorithm, which is O(n3).

Is there a path from node x to node y in 
graph G?
 Input = x, y, and G.
 Use depth-first search, which is O(n) on a 

graph of n nodes and arcs.
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Running Times Between 
Polynomials

You might worry that something like 
O(n log n) is not a polynomial.
However, to be in P, a problem only 

needs an algorithm that runs in time 
less than some polynomial.
Surely O(n log n) is less than the 

polynomial O(n2).
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A Tricky Case: Knapsack

The Knapsack Problem is: given positive 
integers i1, i2 ,…, in, can we divide them 
into two sets with equal sums?
Perhaps we can solve this problem in 

polytime by a dynamic-programming 
algorithm:
 Maintain a table of all the differences we can 

achieve by partitioning the first j integers.
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Knapsack – (2)

Basis: j = 0.  Initially, the table has 
“true” for 0 and “false” for all other 
differences.
Induction: To consider ij, start with a 

new table, initially all false.
Then, if the entry for m is “true” in the 

old table set the entries for m+ij and  
m-ij to “true” in the new table.
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Knapsack – (3)

Suppose we measure running time in 
terms of the sum of the integers, say s.
Each table needs only space O(s) to 

represent all the positive and negative 
differences we could achieve.
Each table can be constructed in time 

O(s).
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Knapsack – (4)

Since n < s, we can build the final table 
in O(s2) time.
From that table, we can see if 0 is 

achievable and solve the problem.
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Subtlety: Measuring Input Size

“Input size” has a specific meaning: the 
length of the representation of the 
problem instance as it is input to a TM.
For the Knapsack Problem, you cannot 

always write the input in a number of 
characters that is polynomial in the sum 
of the integers.
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Knapsack – Bad Case

Suppose we have n integers, each of 
which is around 2n.
We can write integers in binary, so the 

input takes O(n2) space to write down.
But the tables require space O(n2n).
All n tables in time O(n22n).
 Or, since we like to use n as the input size, 

input of length n requires O(n2sqrt(n)) time.
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Redefining Knapsack

We are free to describe another 
problem, call it Pseudo-Knapsack, 
where integers are represented in 
unary.
Pseudo-Knapsack is in P.
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The Class NP

The running time of a nondeterministic 
TM is the maximum number of steps 
taken along any branch.
If that time bound is polynomial, the 

NTM is said to be polynomial-time 
bounded.
And its language/problem is said to be 

in the class NP.
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Example: NP

The Knapsack Problem is definitely in 
NP, even using the conventional binary 
representation of integers.
Use nondeterminism to guess a 

partition of the input into two subsets.
Sum the two subsets and compare.
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P Versus NP

Originally a curiosity of Computer 
Science, mathematicians now recognize 
as one of the most important open 
problems the question P = NP?
There are thousands of problems that 

are in NP but appear not to be in P.
But no proof that they aren’t really in P.
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Complete Problems

One way to address the P = NP
question is to identify complete problems
for NP.
An NP-complete problem has the 

property that it is in NP, and if it is in P, 
then every problem in NP is also in P.
Defined formally via “polytime 

reductions.”
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Complete Problems – Intuition

A complete problem for a class 
embodies every problem in the class, 
even if it does not appear so.
Compare: PCP embodies every TM 

computation, even though it does not 
appear to do so.
Strange but true: Knapsack embodies 

every polytime NTM computation.
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Polytime Reductions

Goal: find a way to show problem L to 
be NP-complete by reducing every 
language/problem in NP to L in such a 
way that if we had a deterministic 
polytime algorithm for L, then we could 
construct a deterministic polytime 
algorithm for any problem in NP.
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Polytime Reductions – (2)

 We need the notion of a polytime 
transducer – a TM that:

1. Takes an input of length n.
2. Operates deterministically for some 

polynomial time p(n).
3. Produces an output on a separate output 

tape.

 Note: output length is at most p(n).
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Polytime Transducer

state

ninput

scratch
tapes

output < p(n)
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Polytime Reductions – (3)

Let L and M be langauges.
Say L is polytime reducible to M if 

there is a polytime transducer T such 
that for every input w to T, the output  
x = T(w) is in M if and only if w is in L.
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Picture of Polytime Reduction

T

in L

not
in L

in M

not in M
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NP-Complete Problems

A problem/language M is said to be NP-
complete if it is in NP, and for every 
language L in NP, there is a polytime 
reduction from L to M.
Fundamental property: if M has a 

polytime algorithm, then so does L.
 I.e., if M is in P, then every L in NP is also in 

P, or “P = NP.”
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The Plan

NP

SAT

All of NP polytime
reduces to SAT, which
is therefore NP-complete

3-
SAT

SAT polytime
reduces to
3-SAT

3-SAT polytime reduces
to many other problems;
they’re all NP-complete
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Proof That Polytime 
Reductions “Work”

Suppose M has an algorithm of 
polynomial time q(n).
Let L have a polytime transducer T to 

M, taking polynomial time p(n).
The output of T, given an input of 

length n, is at most of length p(n).
The algorithm for M on the output of T 

takes time at most q(p(n)).
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Proof – (2)

 We now have a polytime algorithm for L:
1. Given w of length n, use T to produce x of 

length < p(n), taking time < p(n).
2. Use the algorithm for M to tell if x is in M in 

time < q(p(n)).
3. Answer for w is whatever the answer for x 

is.

 Total time < p(n) + q(p(n)) = a 
polynomial.


