
1

Intractable Problems

Time-Bounded Turing Machines
Classes P and NP

Polynomial-Time Reductions

2

Time-Bounded TM’s

A Turing machine that, given an input
of length n, always halts within T(n)
moves is said to be T(n)-time bounded.
 The TM can be multitape.
 Sometimes, it can be nondeterministic.

3

The class P

If a DTM M is T(n)-time bounded for
some polynomial T(n), then we say M is
polynomial-time (“polytime ”) bounded.
And L(M) is said to be in the class P.
Important point: when we talk of P, it

doesn’t matter whether we mean “by a
computer” or “by a TM” (next slide).

4

Polynomial Equivalence of
Computers and TM’s

A multitape TM can simulate a
computer that runs for time O(T(n)) in
at most O(T2(n)) of its own steps.
If T(n) is a polynomial, so is T2(n).

5

Examples of Problems in P

Is w in L(G), for a given CFG G?
 Input = w.
 Use CYK algorithm, which is O(n3).

Is there a path from node x to node y in
graph G?
 Input = x, y, and G.
 Use depth-first search, which is O(n) on a

graph of n nodes and arcs.

6

Running Times Between
Polynomials

You might worry that something like
O(n log n) is not a polynomial.
However, to be in P, a problem only

needs an algorithm that runs in time
less than some polynomial.
Surely O(n log n) is less than the

polynomial O(n2).

7

A Tricky Case: Knapsack

The Knapsack Problem is: given positive
integers i1, i2 ,…, in, can we divide them
into two sets with equal sums?
Perhaps we can solve this problem in

polytime by a dynamic-programming
algorithm:
 Maintain a table of all the differences we can

achieve by partitioning the first j integers.

8

Knapsack – (2)

Basis: j = 0. Initially, the table has
“true” for 0 and “false” for all other
differences.
Induction: To consider ij, start with a

new table, initially all false.
Then, if the entry for m is “true” in the

old table set the entries for m+ij and
m-ij to “true” in the new table.

9

Knapsack – (3)

Suppose we measure running time in
terms of the sum of the integers, say s.
Each table needs only space O(s) to

represent all the positive and negative
differences we could achieve.
Each table can be constructed in time

O(s).

10

Knapsack – (4)

Since n < s, we can build the final table
in O(s2) time.
From that table, we can see if 0 is

achievable and solve the problem.

11

Subtlety: Measuring Input Size

“Input size” has a specific meaning: the
length of the representation of the
problem instance as it is input to a TM.
For the Knapsack Problem, you cannot

always write the input in a number of
characters that is polynomial in the sum
of the integers.

12

Knapsack – Bad Case

Suppose we have n integers, each of
which is around 2n.
We can write integers in binary, so the

input takes O(n2) space to write down.
But the tables require space O(n2n).
All n tables in time O(n22n).
 Or, since we like to use n as the input size,

input of length n requires O(n2sqrt(n)) time.

13

Redefining Knapsack

We are free to describe another
problem, call it Pseudo-Knapsack,
where integers are represented in
unary.
Pseudo-Knapsack is in P.

14

The Class NP

The running time of a nondeterministic
TM is the maximum number of steps
taken along any branch.
If that time bound is polynomial, the

NTM is said to be polynomial-time
bounded.
And its language/problem is said to be

in the class NP.

15

Example: NP

The Knapsack Problem is definitely in
NP, even using the conventional binary
representation of integers.
Use nondeterminism to guess a

partition of the input into two subsets.
Sum the two subsets and compare.

16

P Versus NP

Originally a curiosity of Computer
Science, mathematicians now recognize
as one of the most important open
problems the question P = NP?
There are thousands of problems that

are in NP but appear not to be in P.
But no proof that they aren’t really in P.

17

Complete Problems

One way to address the P = NP
question is to identify complete problems
for NP.
An NP-complete problem has the

property that it is in NP, and if it is in P,
then every problem in NP is also in P.
Defined formally via “polytime

reductions.”

18

Complete Problems – Intuition

A complete problem for a class
embodies every problem in the class,
even if it does not appear so.
Compare: PCP embodies every TM

computation, even though it does not
appear to do so.
Strange but true: Knapsack embodies

every polytime NTM computation.

19

Polytime Reductions

Goal: find a way to show problem L to
be NP-complete by reducing every
language/problem in NP to L in such a
way that if we had a deterministic
polytime algorithm for L, then we could
construct a deterministic polytime
algorithm for any problem in NP.

20

Polytime Reductions – (2)

 We need the notion of a polytime
transducer – a TM that:

1. Takes an input of length n.
2. Operates deterministically for some

polynomial time p(n).
3. Produces an output on a separate output

tape.

 Note: output length is at most p(n).

21

Polytime Transducer

state

ninput

scratch
tapes

output < p(n)

22

Polytime Reductions – (3)

Let L and M be langauges.
Say L is polytime reducible to M if

there is a polytime transducer T such
that for every input w to T, the output
x = T(w) is in M if and only if w is in L.

23

Picture of Polytime Reduction

T

in L

not
in L

in M

not in M

24

NP-Complete Problems

A problem/language M is said to be NP-
complete if it is in NP, and for every
language L in NP, there is a polytime
reduction from L to M.
Fundamental property: if M has a

polytime algorithm, then so does L.
 I.e., if M is in P, then every L in NP is also in

P, or “P = NP.”

25

The Plan

NP

SAT

All of NP polytime
reduces to SAT, which
is therefore NP-complete

3-
SAT

SAT polytime
reduces to
3-SAT

3-SAT polytime reduces
to many other problems;
they’re all NP-complete

26

Proof That Polytime
Reductions “Work”

Suppose M has an algorithm of
polynomial time q(n).
Let L have a polytime transducer T to

M, taking polynomial time p(n).
The output of T, given an input of

length n, is at most of length p(n).
The algorithm for M on the output of T

takes time at most q(p(n)).

27

Proof – (2)

 We now have a polytime algorithm for L:
1. Given w of length n, use T to produce x of

length < p(n), taking time < p(n).
2. Use the algorithm for M to tell if x is in M in

time < q(p(n)).
3. Answer for w is whatever the answer for x

is.

 Total time < p(n) + q(p(n)) = a
polynomial.

