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More Undecidable Problems

Rice’s Theorem
Post’s Correspondence Problem

Some Real Problems
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Properties of Languages

Any set of languages  is a property of 
languages.
Example: The infiniteness property is 

the set of infinite languages.
In what follows, we’ll focus on 

properties of RE languages, because we 
can’t represent other languages by TM’s.
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Properties of Langauges – (2)

Thus, we shall think of a property as a 
problem about Turing machines.
Let LP be the set of binary TM codes for 

TM’s M such that L(M) has property P. 
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Trivial Properties

 There are two (trivial ) properties P for 
which LP is decidable.

1. The always-false property, which contains 
no RE languages.

2. The always-true property, which contains 
every RE language.

 Rice’s Theorem: For every other 
property P, LP is undecidable.
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Reductions

A reduction from language L to 
language L’ is an algorithm (TM that 
always halts) that takes a string w and 
converts it to a string x, with the 
property that:

x is in L’ if and only if w is in L.
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TM’s as Transducers

We have regarded TM’s as acceptors of 
strings.
But we could just as well visualize TM’s 

as having an output tape, where a 
string is written prior to the TM halting.
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Reductions – (2)

If we reduce L to L’, and L’ is decidable, 
then the algorithm for L’ + the 
algorithm of the reduction shows that L 
is also decidable.

Transducer
xw Algorithm

for L’

yes

no
Algorithm for L
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Reductions – (3)

Normally used in the contrapositive.
If we know L is not decidable, then L’ 

cannot be decidable.
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Reductions – Aside

This form of reduction is not the most 
general.
Example: We “reduced” Ld to Lu, but in 

doing so we had to complement 
answers.
More in NP-completeness discussion on 

Karp vs. Cook reductions.
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Proof of Rice’s Theorem

We shall show that for every nontrivial 
property P of the RE languages, LP is 
undecidable.
We show how to reduce Lu to LP.
Since we know Lu is undecidable, it 

follows that LP is also undecidable.
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The Reduction

 Our reduction algorithm must take M and 
w and produce a TM M’.

 L(M’) has property P if and only if M 
accepts w.

 M’ has two tapes, used for:
1. Simulates another TM ML on the input to M’.
2. Simulates M on w.
 Note: neither M, ML, nor w is input to M’.
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The Reduction – (2)

Assume that  does not have property P.
 If it does, consider the complement of P, 

which would also be decidable if P were, 
because the recursive languages are closed 
under complementation.

Let L be any language with property P, 
and let ML be a TM that accepts L.
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Design of M’

1. On the second tape, write w and then 
simulate M on w.

2. If M accepts w, then simulate ML on 
the input x to M’, which appears 
initially on the first tape.

3. M’ accepts its input x if and only if ML
accepts x.
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Action of M’ if M Accepts w

Simulate M
on input wx

Simulate ML
on input x

On accept

Accept
iff x is
in L.



15

Design of M’ – (2)

Suppose M accepts w.
Then M’ simulates ML and therefore 

accepts x if and only if x is in L.
That is, L(M’) = L, L(M’) has property P, 

and M’ is in LP.
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Design of M’ – (3)

Suppose M does not accept w.
Then M’ never starts the simulation of 

ML, and never accepts its input x.
Thus, L(M’) = , and L(M’) does not 

have property P.
That is, M’ is not in LP.
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Design of M’ – Conclusion

Thus, the algorithm that converts M 
and w to M’ is a reduction of Lu to LP.
Thus, LP is undecidable.
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Picture of the Reduction

A real
reduction
algorithm

M, w Hypothetical
algorithm for
property P

M’

Accept
iff M
accepts w

Otherwise
halt without
accepting

This would be an algorithm
for Lu, which doesn’t exist
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Applications of Rice’s Theorem

We now have any number of 
undecidable questions about TM’s:
 Is L(M) a regular language?
 Is L(M) a CFL?
 Does L(M) include any palindromes?
 Is L(M) empty?
 Does L(M) contain more than 1000 strings?
 Etc., etc.
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Post’s Correspondence Problem

Post’s Correspondence Problem (PCP) 
is an example of a problem that does 
not mention TM’s in its statement, yet is 
undecidable.
From PCP, we can prove many other 

non-TM problems undecidable.
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PCP Instances

An instance of PCP is a list of pairs of 
nonempty strings over some alphabet Σ.
 Say (w1, x1), (w2, x2), …, (wn, xn).

The answer to this instance of PCP is 
“yes” if and only if there exists a 
nonempty sequence of indices i1,…,ik, 
such that wi1…win = xi1…xin.
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Example: PCP

Let the alphabet be {0, 1}.
Let the PCP instance consist of the two 

pairs (0, 01) and (100, 001).
We claim there is no solution.
You can’t start with (100, 001), 

because the first characters don’t 
match.
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Example: PCP – (2)
Recall: pairs are (0, 01) and (100, 001)

0
01

Must start
with first
pair

100
001

Can add the
second pair
for a match

100
001

As many
times as 
we like

But we can never make
the first string as long
as the second.
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Example: PCP – (3)

Suppose we add a third pair, so the 
instance becomes: 1 = (0, 01); 2 = 
(100, 001); 3 = (110, 10).
Now 1,3 is a solution; both strings are 

0110.
In fact, any sequence of indexes in 

12*3 is a solution.
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Proving PCP is Undecidable

We’ll introduce the modified PCP 
(MPCP) problem.
 Same as PCP, but the solution must start 

with the first pair in the list.

We reduce Lu to MPCP.
But first, we’ll reduce MPCP to PCP.
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Example: MPCP

The list of pairs (0, 01), (100, 001), 
(110, 10), as an instance of MPCP, has 
a solution as we saw.
However, if we reorder the pairs, say 

(110, 10), (0, 01), (100, 001) there is 
no solution.
 No string 110… can ever equal a string 

10… .
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Representing PCP or MPCP 
Instances

Since the alphabet can be arbitrarily 
large, we need to code symbols.
Say the i-th symbol will be coded by “a” 

followed by i in binary.
Commas and parentheses can 

represent themselves.
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Representing Instances – (2)

Thus, we have a finite alphabet in 
which all instances of PCP or MPCP can 
be represented.
Let LPCP and LMPCP be the languages of 

coded instances of PCP or MPCP, 
respectively, that have a solution.
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Reducing LMPCP to LPCP

 Take an instance of LMPCP and do the 
following, using new symbols * and $.

1. For the first string of each pair, add * after
every character.

2. For the second string of each pair, add * 
before every character.

3. Add pair ($, *$).
4. Make another copy of the first pair, with *’s 

and an extra * prepended to the first string.
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Example: LMPCP to LPCP

MPCP instance,
in order:
(110, 10)
(0, 01)
(100, 001)

PCP instance:
(1*1*0*, *1*0)
(0*, *0*1)
(1*0*0*, *0*0*1)
($, *$) Ender

(*1*1*0*, *1*0)
Special pair version of
first MPCP choice – only
possible start for a PCP
solution.
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LMPCP to LPCP – (2)

 If the MPCP instance has a solution 
string w, then padding with stars fore 
and aft, followed by a $ is a solution 
string for the PCP instance.
 Use same sequence of indexes, but the 

special pair to start.
 Add ender pair as the last index.
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LMPCP to LPCP – (3)

 Conversely, the indexes of a PCP 
solution give us a MPCP solution.

1. First index must be special pair – replace 
by first pair.

2. Remove ender.
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Reducing Lu to LMPCP

We use MPCP to simulate the sequence 
of ID’s that M executes with input w.
Suppose q0w⊦I1⊦I2⊦ … is the sequence 

of ID’s of M with input w.
Then any solution to the MPCP instance 

we can construct will begin with this 
sequence of ID’s, separated by #’s.
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Reducing Lu to LMPCP – (2)

But until M reaches an accepting state, 
the string formed by concatenating the 
second components of the chosen pairs 
will always be a full ID ahead of the 
string from the first pairs.
If M accepts, we can even out the 

difference and solve the MPCP instance.
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Reducing Lu to LMPCP – (3)

Key assumption: M has a semi-infinite 
tape; it never moves left from its initial 
head position.
Alphabet of MPCP instance: state and 

tape symbols of M (assumed disjoint) 
plus special symbol # (assumed not a 
state or tape symbol).
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Reducing Lu to LMPCP – (4)

First MPCP pair: (#, #q0w#).
We start out with the second string having 

the initial ID and a full ID ahead of the first.

(#, #).
We can add ID-enders to both strings.

(X, X) for all tape symbols X of M.
We can copy a tape symbol from one ID to 

the next.
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Example: Copying Symbols

Suppose we have chosen MPCP pairs to 
simulate some number of steps of M, 
and the partial strings from these pairs 
look like:

. . . #

. . . #ABqCD#A
A

B
B
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Reducing Lu to LMPCP – (5)

 For every state q of M and tape symbol 
X, there are pairs:

1. (qX, Yp) if δ(q, X) = (p, Y, R).
2. (ZqX, pZY) if δ(q, X) = (p, Y, L) [any Z].

 Also, if X is the blank, # can substitute.
1. (q#, Yp#) if δ(q, B) = (p, Y, R).
2. (Zq#, pZY#) if δ(q, X) = (p, Y, L) [any Z].
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Example: Copying Symbols – (2)

Continuing the previous example, if 
δ(q, C) = (p, E, R), then:

. . . #AB

. . . #ABqCD#AB
If M moves left, we should not have 

copied B if we wanted a solution.

Ep
qC

D
D

#
#
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Reducing Lu to LMPCP – (6)

If M reaches final state f, then f “eats” the 
neighboring tape symbols, one or two at a 
time, to enable M to reach an “ID” that is 
essentially empty.
The MPCP instance has pairs (XfY, f), 

(fY, f), and (Xf, f) for all tape symbols X 
and Y.
To even up the strings and solve: 

(f##, #).
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Example: Cleaning Up After 
Acceptance

… #
...  #ABfCDE#A

ABfC
f

D
D

E
E

#
#

AfD
f

E
E #

# f E
f

#
#

f##
#
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CFG’s from PCP

We are going to prove that the 
ambiguity problem (is a given CFG 
ambiguous?) is undecidable.
As with PCP instances, CFG instances 

must be coded to have a finite 
alphabet.
Let a followed by a binary integer i 

represent the i-th terminal.
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CFG’s from PCP – (2)

Let A followed by a binary integer i 
represent the i-th variable.
Let A1 be the start symbol.
Symbols ->, comma, and ε represent 

themselves.
Example: S -> 0S1 | A, A -> c is 

represented by 
A1->a1A1a10,A1->A10,A10->a11



44

CFG’s from PCP – (3)

Consider a PCP instance with k pairs.
 i-th pair is (wi, xi).

Assume index symbols a1,…, ak are not 
in the alphabet of the PCP instance.
The list language for w1,…, wk has a 

CFG with productions  A -> wiAai and   
A -> wiai for all i = 1, 2,…, k.
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List Languages

Similarly, from the second components 
of each pair, we can construct a list 
language with productions B -> xiBai
and B -> xiai for all i = 1, 2,…, k.
These languages each consist of the 

concatenation of strings from the first 
or second components of pairs, 
followed by the reverse of their indexes.



46

Example: List Languages

Consider PCP instance (a,ab), (baa,aab), 
(bba,ba).
Use 1, 2, 3 as the index symbols for these 

pairs in order.
A -> aA1 | baaA2 | bbaA3 | a1 | baa2 | bba3
B -> abB1 | aabB2 | baB3 | ab1 | aab2 | ba3



47

Reduction of PCP to the 
Ambiguity Problem

Given a PCP instance, construct 
grammars for the two list languages, 
with variables A and B.
Add productions S -> A | B.
The resulting grammar is ambiguous if 

and only if there is a solution to the PCP 
instance.
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Example: Reduction to Ambiguity

A -> aA1 | baaA2 | bbaA3 | a1 | baa2 | bba3
B -> abB1 | aabB2 | baB3 | ab1 | aab2 | ba3
S -> A | B
There is a solution 1, 3.
Note abba31 has leftmost derivations:
S => A => aA1 => abba31
S => B => abB1 => abba31
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Proof the Reduction Works

In one direction, if a1,…, ak is a solution, 
then w1…wkak…a1 equals x1…xkak…a1
and has two derivations, one starting 
S -> A, the other starting S -> B.
Conversely, there can only be two 

leftmost derivations of the same terminal 
string if they begin with different first 
productions.  Why? Next slide.
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Proof – Continued

If the two derivations begin with the 
same first step, say S -> A, then the 
sequence of index symbols uniquely 
determines which productions are used.
 Each except the last would be the one with 

A in the middle and that index symbol at 
the end.
 The last is the same, but no A in the 

middle.
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Example: S =>A=>*…2321
S

A
1w1 A

2w2 A

3w3 A

2w2
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More “Real” Undecidable 
Problems

 To show things like CFL-equivalence 
to be undecidable, it helps to know 
that the complement of a list language 
is also a CFL.

 We’ll construct a deterministic PDA for 
the complement langauge.
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DPDA for the Complement of 
a List Language

Start with a bottom-of-stack marker.
While PCP symbols arrive at the input, 

push them onto the stack.
After the first index symbol arrives, 

start checking the stack for the reverse 
of the corresponding string.
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Complement DPDA – (2)

The DPDA accepts after every input, 
with one exception.
If the input has consisted so far of only 

PCP symbols and then index symbols, 
and the bottom-of-stack marker is 
exposed after reading an index symbol, 
do not accept.
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Using the Complements

For a given PCP instance, let LA and LB
be the list languages for the first and 
second components of pairs.
Let LA

c and LB
c be their complements.

All these languages are CFL’s.
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Using the Complements

Consider LA
c  LB

c.
Also a CFL.
= Σ* if and only if the PCP instance has no 

solution.
Why? a solution a1,…, an implies 

w1…wnan…a1 is not in LA
c, and the equal 

x1…xnan…a1 is not in LB
c.

Conversely, anything missing is a solution.
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Undecidability of “= Σ*”

We have reduced PCP to the problem is 
a given CFL equal to all strings over its 
terminal alphabet?
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Undecidablility of “CFL is 
Regular”

Also undecidable: is a CFL a regular 
language?
Same reduction from PCP.
Proof: One direction: If LA

c  LB
c = Σ*, 

then it surely is regular.
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“= Regular” – (2)

Conversely, we can show that if 
L = LA

c  LB
c is not Σ*, then it can’t be 

regular.
Proof: Suppose wx is a solution to PCP, 

where x is the indices.
Define homomorphism h(0) = w and 

h(1) = x.
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“= Regular” – (3)

h(0n1n) is not in L, because the 
repetition of any solution is also a 
solution.
However, h(y) is in L for any other y in 

{0,1}*.
If L were regular, so would be h–1(L), 

and so would be its complement = 
{0n1n |n > 1}.


