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More Undecidable Problems

Rice’s Theorem
Post’s Correspondence Problem

Some Real Problems
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Properties of Languages

Any set of languages  is a property of 
languages.
Example: The infiniteness property is 

the set of infinite languages.
In what follows, we’ll focus on 

properties of RE languages, because we 
can’t represent other languages by TM’s.
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Properties of Langauges – (2)

Thus, we shall think of a property as a 
problem about Turing machines.
Let LP be the set of binary TM codes for 

TM’s M such that L(M) has property P. 
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Trivial Properties

 There are two (trivial ) properties P for 
which LP is decidable.

1. The always-false property, which contains 
no RE languages.

2. The always-true property, which contains 
every RE language.

 Rice’s Theorem: For every other 
property P, LP is undecidable.
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Reductions

A reduction from language L to 
language L’ is an algorithm (TM that 
always halts) that takes a string w and 
converts it to a string x, with the 
property that:

x is in L’ if and only if w is in L.
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TM’s as Transducers

We have regarded TM’s as acceptors of 
strings.
But we could just as well visualize TM’s 

as having an output tape, where a 
string is written prior to the TM halting.
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Reductions – (2)

If we reduce L to L’, and L’ is decidable, 
then the algorithm for L’ + the 
algorithm of the reduction shows that L 
is also decidable.

Transducer
xw Algorithm

for L’

yes

no
Algorithm for L
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Reductions – (3)

Normally used in the contrapositive.
If we know L is not decidable, then L’ 

cannot be decidable.
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Reductions – Aside

This form of reduction is not the most 
general.
Example: We “reduced” Ld to Lu, but in 

doing so we had to complement 
answers.
More in NP-completeness discussion on 

Karp vs. Cook reductions.
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Proof of Rice’s Theorem

We shall show that for every nontrivial 
property P of the RE languages, LP is 
undecidable.
We show how to reduce Lu to LP.
Since we know Lu is undecidable, it 

follows that LP is also undecidable.
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The Reduction

 Our reduction algorithm must take M and 
w and produce a TM M’.

 L(M’) has property P if and only if M 
accepts w.

 M’ has two tapes, used for:
1. Simulates another TM ML on the input to M’.
2. Simulates M on w.
 Note: neither M, ML, nor w is input to M’.
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The Reduction – (2)

Assume that  does not have property P.
 If it does, consider the complement of P, 

which would also be decidable if P were, 
because the recursive languages are closed 
under complementation.

Let L be any language with property P, 
and let ML be a TM that accepts L.
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Design of M’

1. On the second tape, write w and then 
simulate M on w.

2. If M accepts w, then simulate ML on 
the input x to M’, which appears 
initially on the first tape.

3. M’ accepts its input x if and only if ML
accepts x.
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Action of M’ if M Accepts w

Simulate M
on input wx

Simulate ML
on input x

On accept

Accept
iff x is
in L.
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Design of M’ – (2)

Suppose M accepts w.
Then M’ simulates ML and therefore 

accepts x if and only if x is in L.
That is, L(M’) = L, L(M’) has property P, 

and M’ is in LP.
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Design of M’ – (3)

Suppose M does not accept w.
Then M’ never starts the simulation of 

ML, and never accepts its input x.
Thus, L(M’) = , and L(M’) does not 

have property P.
That is, M’ is not in LP.
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Design of M’ – Conclusion

Thus, the algorithm that converts M 
and w to M’ is a reduction of Lu to LP.
Thus, LP is undecidable.
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Picture of the Reduction

A real
reduction
algorithm

M, w Hypothetical
algorithm for
property P

M’

Accept
iff M
accepts w

Otherwise
halt without
accepting

This would be an algorithm
for Lu, which doesn’t exist
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Applications of Rice’s Theorem

We now have any number of 
undecidable questions about TM’s:
 Is L(M) a regular language?
 Is L(M) a CFL?
 Does L(M) include any palindromes?
 Is L(M) empty?
 Does L(M) contain more than 1000 strings?
 Etc., etc.
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Post’s Correspondence Problem

Post’s Correspondence Problem (PCP) 
is an example of a problem that does 
not mention TM’s in its statement, yet is 
undecidable.
From PCP, we can prove many other 

non-TM problems undecidable.
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PCP Instances

An instance of PCP is a list of pairs of 
nonempty strings over some alphabet Σ.
 Say (w1, x1), (w2, x2), …, (wn, xn).

The answer to this instance of PCP is 
“yes” if and only if there exists a 
nonempty sequence of indices i1,…,ik, 
such that wi1…win = xi1…xin.
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Example: PCP

Let the alphabet be {0, 1}.
Let the PCP instance consist of the two 

pairs (0, 01) and (100, 001).
We claim there is no solution.
You can’t start with (100, 001), 

because the first characters don’t 
match.
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Example: PCP – (2)
Recall: pairs are (0, 01) and (100, 001)

0
01

Must start
with first
pair

100
001

Can add the
second pair
for a match

100
001

As many
times as 
we like

But we can never make
the first string as long
as the second.
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Example: PCP – (3)

Suppose we add a third pair, so the 
instance becomes: 1 = (0, 01); 2 = 
(100, 001); 3 = (110, 10).
Now 1,3 is a solution; both strings are 

0110.
In fact, any sequence of indexes in 

12*3 is a solution.
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Proving PCP is Undecidable

We’ll introduce the modified PCP 
(MPCP) problem.
 Same as PCP, but the solution must start 

with the first pair in the list.

We reduce Lu to MPCP.
But first, we’ll reduce MPCP to PCP.
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Example: MPCP

The list of pairs (0, 01), (100, 001), 
(110, 10), as an instance of MPCP, has 
a solution as we saw.
However, if we reorder the pairs, say 

(110, 10), (0, 01), (100, 001) there is 
no solution.
 No string 110… can ever equal a string 

10… .
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Representing PCP or MPCP 
Instances

Since the alphabet can be arbitrarily 
large, we need to code symbols.
Say the i-th symbol will be coded by “a” 

followed by i in binary.
Commas and parentheses can 

represent themselves.
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Representing Instances – (2)

Thus, we have a finite alphabet in 
which all instances of PCP or MPCP can 
be represented.
Let LPCP and LMPCP be the languages of 

coded instances of PCP or MPCP, 
respectively, that have a solution.
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Reducing LMPCP to LPCP

 Take an instance of LMPCP and do the 
following, using new symbols * and $.

1. For the first string of each pair, add * after
every character.

2. For the second string of each pair, add * 
before every character.

3. Add pair ($, *$).
4. Make another copy of the first pair, with *’s 

and an extra * prepended to the first string.
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Example: LMPCP to LPCP

MPCP instance,
in order:
(110, 10)
(0, 01)
(100, 001)

PCP instance:
(1*1*0*, *1*0)
(0*, *0*1)
(1*0*0*, *0*0*1)
($, *$) Ender

(*1*1*0*, *1*0)
Special pair version of
first MPCP choice – only
possible start for a PCP
solution.
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LMPCP to LPCP – (2)

 If the MPCP instance has a solution 
string w, then padding with stars fore 
and aft, followed by a $ is a solution 
string for the PCP instance.
 Use same sequence of indexes, but the 

special pair to start.
 Add ender pair as the last index.
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LMPCP to LPCP – (3)

 Conversely, the indexes of a PCP 
solution give us a MPCP solution.

1. First index must be special pair – replace 
by first pair.

2. Remove ender.
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Reducing Lu to LMPCP

We use MPCP to simulate the sequence 
of ID’s that M executes with input w.
Suppose q0w⊦I1⊦I2⊦ … is the sequence 

of ID’s of M with input w.
Then any solution to the MPCP instance 

we can construct will begin with this 
sequence of ID’s, separated by #’s.
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Reducing Lu to LMPCP – (2)

But until M reaches an accepting state, 
the string formed by concatenating the 
second components of the chosen pairs 
will always be a full ID ahead of the 
string from the first pairs.
If M accepts, we can even out the 

difference and solve the MPCP instance.
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Reducing Lu to LMPCP – (3)

Key assumption: M has a semi-infinite 
tape; it never moves left from its initial 
head position.
Alphabet of MPCP instance: state and 

tape symbols of M (assumed disjoint) 
plus special symbol # (assumed not a 
state or tape symbol).
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Reducing Lu to LMPCP – (4)

First MPCP pair: (#, #q0w#).
We start out with the second string having 

the initial ID and a full ID ahead of the first.

(#, #).
We can add ID-enders to both strings.

(X, X) for all tape symbols X of M.
We can copy a tape symbol from one ID to 

the next.
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Example: Copying Symbols

Suppose we have chosen MPCP pairs to 
simulate some number of steps of M, 
and the partial strings from these pairs 
look like:

. . . #

. . . #ABqCD#A
A

B
B
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Reducing Lu to LMPCP – (5)

 For every state q of M and tape symbol 
X, there are pairs:

1. (qX, Yp) if δ(q, X) = (p, Y, R).
2. (ZqX, pZY) if δ(q, X) = (p, Y, L) [any Z].

 Also, if X is the blank, # can substitute.
1. (q#, Yp#) if δ(q, B) = (p, Y, R).
2. (Zq#, pZY#) if δ(q, X) = (p, Y, L) [any Z].
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Example: Copying Symbols – (2)

Continuing the previous example, if 
δ(q, C) = (p, E, R), then:

. . . #AB

. . . #ABqCD#AB
If M moves left, we should not have 

copied B if we wanted a solution.

Ep
qC

D
D

#
#
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Reducing Lu to LMPCP – (6)

If M reaches final state f, then f “eats” the 
neighboring tape symbols, one or two at a 
time, to enable M to reach an “ID” that is 
essentially empty.
The MPCP instance has pairs (XfY, f), 

(fY, f), and (Xf, f) for all tape symbols X 
and Y.
To even up the strings and solve: 

(f##, #).
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Example: Cleaning Up After 
Acceptance

… #
...  #ABfCDE#A

ABfC
f

D
D

E
E

#
#

AfD
f

E
E #

# f E
f

#
#

f##
#
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CFG’s from PCP

We are going to prove that the 
ambiguity problem (is a given CFG 
ambiguous?) is undecidable.
As with PCP instances, CFG instances 

must be coded to have a finite 
alphabet.
Let a followed by a binary integer i 

represent the i-th terminal.
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CFG’s from PCP – (2)

Let A followed by a binary integer i 
represent the i-th variable.
Let A1 be the start symbol.
Symbols ->, comma, and ε represent 

themselves.
Example: S -> 0S1 | A, A -> c is 

represented by 
A1->a1A1a10,A1->A10,A10->a11
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CFG’s from PCP – (3)

Consider a PCP instance with k pairs.
 i-th pair is (wi, xi).

Assume index symbols a1,…, ak are not 
in the alphabet of the PCP instance.
The list language for w1,…, wk has a 

CFG with productions  A -> wiAai and   
A -> wiai for all i = 1, 2,…, k.
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List Languages

Similarly, from the second components 
of each pair, we can construct a list 
language with productions B -> xiBai
and B -> xiai for all i = 1, 2,…, k.
These languages each consist of the 

concatenation of strings from the first 
or second components of pairs, 
followed by the reverse of their indexes.
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Example: List Languages

Consider PCP instance (a,ab), (baa,aab), 
(bba,ba).
Use 1, 2, 3 as the index symbols for these 

pairs in order.
A -> aA1 | baaA2 | bbaA3 | a1 | baa2 | bba3
B -> abB1 | aabB2 | baB3 | ab1 | aab2 | ba3
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Reduction of PCP to the 
Ambiguity Problem

Given a PCP instance, construct 
grammars for the two list languages, 
with variables A and B.
Add productions S -> A | B.
The resulting grammar is ambiguous if 

and only if there is a solution to the PCP 
instance.
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Example: Reduction to Ambiguity

A -> aA1 | baaA2 | bbaA3 | a1 | baa2 | bba3
B -> abB1 | aabB2 | baB3 | ab1 | aab2 | ba3
S -> A | B
There is a solution 1, 3.
Note abba31 has leftmost derivations:
S => A => aA1 => abba31
S => B => abB1 => abba31
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Proof the Reduction Works

In one direction, if a1,…, ak is a solution, 
then w1…wkak…a1 equals x1…xkak…a1
and has two derivations, one starting 
S -> A, the other starting S -> B.
Conversely, there can only be two 

leftmost derivations of the same terminal 
string if they begin with different first 
productions.  Why? Next slide.
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Proof – Continued

If the two derivations begin with the 
same first step, say S -> A, then the 
sequence of index symbols uniquely 
determines which productions are used.
 Each except the last would be the one with 

A in the middle and that index symbol at 
the end.
 The last is the same, but no A in the 

middle.



51

Example: S =>A=>*…2321
S

A
1w1 A

2w2 A

3w3 A

2w2
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More “Real” Undecidable 
Problems

 To show things like CFL-equivalence 
to be undecidable, it helps to know 
that the complement of a list language 
is also a CFL.

 We’ll construct a deterministic PDA for 
the complement langauge.
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DPDA for the Complement of 
a List Language

Start with a bottom-of-stack marker.
While PCP symbols arrive at the input, 

push them onto the stack.
After the first index symbol arrives, 

start checking the stack for the reverse 
of the corresponding string.
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Complement DPDA – (2)

The DPDA accepts after every input, 
with one exception.
If the input has consisted so far of only 

PCP symbols and then index symbols, 
and the bottom-of-stack marker is 
exposed after reading an index symbol, 
do not accept.
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Using the Complements

For a given PCP instance, let LA and LB
be the list languages for the first and 
second components of pairs.
Let LA

c and LB
c be their complements.

All these languages are CFL’s.
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Using the Complements

Consider LA
c  LB

c.
Also a CFL.
= Σ* if and only if the PCP instance has no 

solution.
Why? a solution a1,…, an implies 

w1…wnan…a1 is not in LA
c, and the equal 

x1…xnan…a1 is not in LB
c.

Conversely, anything missing is a solution.
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Undecidability of “= Σ*”

We have reduced PCP to the problem is 
a given CFL equal to all strings over its 
terminal alphabet?
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Undecidablility of “CFL is 
Regular”

Also undecidable: is a CFL a regular 
language?
Same reduction from PCP.
Proof: One direction: If LA

c  LB
c = Σ*, 

then it surely is regular.
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“= Regular” – (2)

Conversely, we can show that if 
L = LA

c  LB
c is not Σ*, then it can’t be 

regular.
Proof: Suppose wx is a solution to PCP, 

where x is the indices.
Define homomorphism h(0) = w and 

h(1) = x.
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“= Regular” – (3)

h(0n1n) is not in L, because the 
repetition of any solution is also a 
solution.
However, h(y) is in L for any other y in 

{0,1}*.
If L were regular, so would be h–1(L), 

and so would be its complement = 
{0n1n |n > 1}.


