
1

Decidability

Turing Machines Coded as Binary
Strings

Diagonalizing over Turing
Machines

Problems as Languages
Undecidable Problems

2

Binary-Strings from TM’s

 We shall restrict ourselves to TM’s with
input alphabet {0, 1}.

 Assign positive integers to the three
classes of elements involved in moves:

1. States: q1(start state), q2 (final state), q3, …
2. Symbols X1 (0), X2 (1), X3 (blank), X4, …
3. Directions D1 (L) and D2 (R).

3

Binary Strings from TM’s – (2)

Suppose δ(qi, Xj) = (qk, Xl, Dm).

Represent this rule by string
0i10j10k10l10m.
Key point: since integers i, j, … are all

> 0, there cannot be two consecutive
1’s in these strings.

4

Binary Strings from TM’s – (2)

Represent a TM by concatenating the
codes for each of its moves, separated
by 11 as punctuation.
 That is: Code111Code211Code311 …

5

Enumerating TM’s and Binary
Strings

Recall we can convert binary strings to
integers by prepending a 1 and treating
the resulting string as a base-2 integer.
Thus, it makes sense to talk about “the

i-th binary string” and about “the i-th
Turing machine.”
Note: if i makes no sense as a TM,

assume the i-th TM accepts nothing.

6

Table of Acceptance

1
2
3
4
5
6
.
.
.

TM
i

1 2 3 4 5 6 . . .

String j

x

x = 0 means
the i-th TM does
not accept the
j-th string; 1
means it does.

7

Diagonalization Again

Whenever we have a table like the one
on the previous slide, we can
diagonalize it.
 That is, construct a sequence D by

complementing each bit along the major
diagonal.

Formally, D = a1a2…, where ai = 0 if
the (i, i) table entry is 1, and vice-versa.

8

The Diagonalization Argument

Could D be a row (representing the
language accepted by a TM) of the
table?
Suppose it were the j-th row.
But D disagrees with the j-th row at the

j-th column.
Thus D is not a row.

9

Diagonalization – (2)

Consider the diagonalization language
Ld = {w | w is the i-th string, and the
i-th TM does not accept w}.
We have shown that Ld is not a

recursively enumerable language; i.e., it
has no TM.

10

Problems

Informally, a “problem” is a yes/no
question about an infinite set of
possible instances.
Example: “Does graph G have a

Hamilton cycle (cycle that touches each
node exactly once)?
 Each undirected graph is an instance of the

“Hamilton-cycle problem.”

11

Problems – (2)

Formally, a problem is a language.
Each string encodes some instance.
The string is in the language if and only

if the answer to this instance of the
problem is “yes.”

12

Example: A Problem About
Turing Machines

We can think of the language Ld as a
problem.
“Does this TM not accept its own

code?”

13

Decidable Problems

A problem is decidable if there is an
algorithm to answer it.
 Recall: An “algorithm,” formally, is a TM

that halts on all inputs, accepted or not.
 Put another way, “decidable problem” =

“recursive language.”

Otherwise, the problem is undecidable.

14

Bullseye Picture

Decidable
problems =
Recursive
languages

Recursively
enumerable
languages

Not recursively
enumerable
languages Ld

Are there
any languages
here?

15

From the Abstract to the Real

While the fact that Ld is undecidable is
interesting intellectually, it doesn’t
impact the real world directly.
We first shall develop some TM-related

problems that are undecidable, but our
goal is to use the theory to show some
real problems are undecidable.

16

Examples: Undecidable Problems

Can a particular line of code in a
program ever be executed?
Is a given context-free grammar

ambiguous?
Do two given CFG’s generate the same

language?

17

The Universal Language

An example of a recursively
enumerable, but not recursive language
is the language Lu of a universal Turing
machine.
That is, the UTM takes as input the

code for some TM M and some binary
string w and accepts if and only if M
accepts w.

18

Designing the UTM

Inputs are of the form:
Code for M 111 w

Note: A valid TM code never has 111,
so we can split M from w.
The UTM must accept its input if and

only if M is a valid TM code and that TM
accepts w.

19

The UTM – (2)

The UTM will have several tapes.
Tape 1 holds the input M111w
Tape 2 holds the tape of M.
Tape 3 holds the state of M.

20

The UTM – (3)

Step 1: The UTM checks that M is a
valid code for a TM.
 E.g., all moves have five components, no

two moves have the same state/symbol as
first two components.

If M is not valid, its language is empty,
so the UTM immediately halts without
accepting.

21

The UTM – (4)

Step 2: The UTM examines M to see
how many of its own tape squares it
needs to represent one symbol of M.
Step 3: Initialize Tape 2 to represent

the tape of M with input w, and initialize
Tape 3 to hold the start state.

22

The UTM – (5)

Step 4: Simulate M.
 Look for a move on Tape 1 that matches

the state on Tape 3 and the tape symbol
under the head on Tape 2.
 If found, change the symbol and move the

head marker on Tape 2 and change the
State on Tape 3.
 If M accepts, the UTM also accepts.

23

Proof That Lu is Recursively
Enumerable, but not Recursive

We designed a TM for Lu, so it is surely
RE.
Suppose it were recursive; that is, we

could design a UTM U that always
halted.
Then we could also design an algorithm

for Ld, as follows.

24

Proof – (2)

 Given input w, we can decide if it is in Ld
by the following steps.

1. Check that w is a valid TM code.
 If not, then its language is empty, so w is in Ld.

2. If valid, use the hypothetical algorithm to
decide whether w111w is in Lu.

3. If so, then w is not in Ld; else it is.

25

Proof – (3)

But we already know there is no
algorithm for Ld.
Thus, our assumption that there was an

algorithm for Lu is wrong.
Lu is RE, but not recursive.

26

Bullseye Picture

Decidable
problems =
Recursive
languages

Recursively
enumerable
languages

Not recursively
enumerable
languages Ld

Lu

All these are
undecidable

