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More About Turing Machines

“Programming Tricks”
Restrictions
Extensions

Closure Properties
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Programming Trick: Multiple Tracks

Think of tape symbols as vectors with k 
components, each chosen from a finite 
alphabet.
Makes the tape appear to have k tracks.
Let input symbols be blank in all but one 

track.
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Picture of Multiple Tracks

q

X
Y
Z

Represents one symbol [X,Y,Z]

0
B
B

Represents
input symbol 0

B
B
B

Represents
the blank
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Programming Trick: Marking

A common use for an extra track is to 
mark certain positions.
Almost all tape squares hold B (blank) 

in this track, but several hold special 
symbols (marks) that allow the TM to 
find particular places on the tape.
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Marking

q

X
Y

B
Z

B
W

Marked Y

Unmarked
W and Z
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Programming Trick: Caching 
in the State

The state can also be a vector.
First component is the “control state.”
Other components hold data from a 

finite alphabet.
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Example: Using These Tricks

This TM doesn’t do anything terribly 
useful; it copies its input w infinitely.
Control states:
 q: Mark your position and remember the 

input symbol seen.
 p: Run right, remembering the symbol and 

looking for a blank.  Deposit symbol.
 r: Run left, looking for the mark.
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Example – (2)

States have the form [x, Y], where x is 
q, p, or r and Y is 0, 1, or B.
 Only p uses 0 and 1.

Tape symbols have the form [U, V].
 U is either X (the “mark”) or B.
 V is 0, 1 (the input symbols) or B.
 [B, B] is the TM blank; [B, 0] and [B, 1] 

are the inputs.
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The Transition Function

Convention: a and b each stand for 
“either 0 or 1.”
δ([q,B], [B,a]) = ([p,a], [X,a], R).
 In state q, copy the input symbol under 

the head (i.e., a ) into the state.
Mark the position read.
 Go to state p and move right.
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Transition Function – (2)

δ([p,a], [B,b]) = ([p,a], [B,b], R).
 In state p, search right, looking for a blank 

symbol (not just B in the mark track).
δ([p,a], [B,B]) = ([r,B], [B,a], L).
When you find a B, replace it by the 

symbol (a ) carried in the “cache.”
 Go to state r and move left.
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Transition Function – (3)

δ([r,B], [B,a]) = ([r,B], [B,a], L).
 In state r, move left, looking for the mark.

δ([r,B], [X,a]) = ([q,B], [B,a], R).
When the mark is found, go to state q and 

move right.
 But remove the mark from where it was.
 q will place a new mark and the cycle 

repeats.
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Simulation of the TM

q

B

. . . B   B   B   B  . . .

. . . 0   1   B   B  . . .
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Simulation of the TM

p

0

. . . X   B   B   B  . . .

. . . 0   1   B   B  . . .
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Simulation of the TM

p

0

. . . X   B   B   B  . . .

. . . 0   1   B   B  . . .
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Simulation of the TM

r

B

. . . X   B   B   B  . . .

. . . 0   1   0   B  . . .
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Simulation of the TM

r

B

. . . X   B   B   B  . . .

. . . 0   1   0   B  . . .
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Simulation of the TM

q

B

. . . B   B   B   B  . . .

. . . 0   1   0   B  . . .
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Simulation of the TM

p

1

. . . B   X   B   B  . . .

. . . 0   1   0   B  . . .
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Semi-infinite Tape

We can assume the TM never moves 
left from the initial position of the head.
Let this position be 0; positions to the 

right are 1, 2, … and positions to the 
left are –1, –2, …
New TM has two tracks.
 Top holds positions 0, 1, 2, …
 Bottom holds a marker, positions –1, –2, …
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Simulating Infinite Tape by 
Semi-infinite Tape

0   1   2   3   . . .

*  -1  -2  -3  . . .

q

U/L

State remembers whether
simulating upper or lower
track.  Reverse directions
for lower track.

Put * here
at the first
move

You don’t need to do anything,
because these are initially B.
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More Restrictions

Two stacks can simulate one tape.
 One holds positions to the left of the head; 

the other holds positions to the right.

In fact, by a clever construction, the 
two stacks to be counters = only two 
stack symbols, one of which can only 
appear at the bottom. 

Factoid: Invented by Pat Fischer,
whose main claim to fame is that
he was a victim of the Unabomber.
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Extensions

 More general than the standard TM.
 But still only able to define the RE 

languages.
1. Multitape TM.
2. Nondeterministic TM.
3. Store for name-value pairs.
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Multitape Turing Machines

Allow a TM to have k tapes for any 
fixed k.
Move of the TM depends on the state 

and the symbols under the head for 
each tape.
In one move, the TM can change state, 

write symbols under each head, and 
move each head independently.
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Simulating k Tapes by One

Use 2k tracks.
Each tape of the k-tape machine is 

represented by a track.
The head position for each track is 

represented by a mark on an additional 
track.
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Picture of Multitape Simulation

q

X                        head for tape 1
. . .  A   B   C   A   C   B   . . .     tape 1

X              head for tape 2
. . .  U   V   U   U  W   V   . . .    tape 2
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Nondeterministic TM’s

Allow the TM to have a choice of move 
at each step.
 Each choice is a state-symbol-direction 

triple, as for the deterministic TM.

The TM accepts its input if any 
sequence of choices leads to an 
accepting state.
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Simulating a NTM by a DTM

 The DTM maintains on its tape a 
queue of ID’s of the NTM.

 A second track is used to mark certain 
positions:

1. A mark for the ID at the head of the 
queue.

2. A mark to help copy the ID at the head 
and make a one-move change.
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Picture of the DTM Tape

ID0 # ID1 # …  # IDk # IDk+1 …        # IDn # New ID
X

Front of
queue

Y

Where you are
copying IDk with 
a move

Rear of
queue
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Operation of the Simulating DTM

The DTM finds the ID at the current 
front of the queue.
It looks for the state in that ID so it can 

determine the moves permitted from 
that ID.
If there are m possible moves, it 

creates m new ID’s, one for each move, 
at the rear of the queue.
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Operation of the DTM – (2)

The m new ID’s are created one at a 
time.
After all are created, the marker for the 

front of the queue is moved one ID 
toward the rear of the queue.
However, if a created ID has an 

accepting state, the DTM instead 
accepts and halts.
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Why the NTM -> DTM 
Construction Works

There is an upper bound, say k, on the 
number of choices of move of the NTM 
for any state/symbol combination.
Thus, any ID reachable from the initial 

ID by n moves of the NTM will be 
constructed by the DTM after 
constructing at most (kn+1-k)/(k-1)ID’s. 

Sum of k+k2+…+kn
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Why? – (2)

If the NTM accepts, it does so in some 
sequence of n choices of move.
Thus the ID with an accepting state will 

be constructed by the DTM in some 
large number of its own moves.
If the NTM does not accept, there is no 

way for the DTM to accept.
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Taking Advantage of Extensions

We now have a really good situation.
When we discuss construction of 

particular TM’s that take other TM’s as 
input, we can assume the input TM is 
as simple as possible.
 E.g., one, semi-infinite tape, deterministic.

But the simulating TM can have many 
tapes, be nondeterministic, etc.
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Simulating a Name-Value
Store by a TM

The TM uses one of several tapes to 
hold an arbitrarily large sequence of 
name-value pairs in the format 
#name*value#…
Mark, using a second track, the left end 

of the sequence.
 A second tape can hold a name whose 

value we want to look up.
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Lookup

Starting at the left end of the store, 
compare the lookup name with each 
name in the store.
When we find a match, take what 

follows between the * and the next # 
as the value.
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Insertion

Suppose we want to insert name-value 
pair (n, v), or replace the current value 
associated with name n by v.
Perform lookup for name n.
If not found, add n*v# at the end of 

the store.
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Insertion – (2)

If we find #n*v’#, we need to replace 
v’ by v.
If v is shorter than v’, you can leave 

blanks to fill out the replacement.
But if v is longer than v’, you need to 

make room.
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Insertion – (3)

Use a third tape to copy everything from 
the first tape to the right of v’.
Mark the position of the * to the left of 

v’ before you do.
On the first tape, write v just to the left 

of that star.
Copy from the third tape to the first, 

leaving enough room for v.
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Picture of Shifting Right

. . . # n * v’ # blah blah blah . . .Tape 1

# blah blah blah . . .Tape 3

v
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Picture of Shifting Right

. . . # n *                 # blah blah blah . . .Tape 1

# blah blah blah . . .Tape 3

v
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Closure Properties of 
Recursive and RE Languages

Both closed under union, concatenation, 
star, reversal, intersection, inverse 
homomorphism.
Recursive closed under difference, 

complementation.
RE closed under homomorphism.
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Union

Let L1 = L(M1) and L2 = L(M2).
Assume M1 and M2 are single-semi-

infinite-tape TM’s.
Construct 2-tape TM M to copy its input 

onto the second tape and simulate the 
two TM’s M1 and M2 each on one of the 
two tapes, “in parallel.”
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Union – (2)

Recursive languages: If M1 and M2 are 
both algorithms, then M will always halt 
in both simulations.
RE languages: accept if either accepts, 

but you may find both TM’s run forever 
without halting or accepting.
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Picture of Union/Recursive

M1

M2

Input w

Accept

Accept

Reject

Reject

OR

Reject

Accept

AND

M

Remember: = “halt
without accepting
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Picture of Union/RE

M1

M2

Input w

Accept

Accept

OR Accept

M
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Intersection/Recursive – Same Idea

M1

M2

Input w

Accept

Accept

Reject

Reject

AND

Reject

Accept

OR

M
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Intersection/RE

M1

M2

Input w

Accept

Accept

AND Accept

M
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Difference, Complement

Recursive languages: both TM’s will 
eventually halt.
Accept if M1 accepts and M2 does not.
 Corollary: Recursive languages are closed 

under complementation.

RE Languages: can’t do it; M2 may 
never halt, so you can’t be sure input is 
in the difference.
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Concatenation/RE

 Let L1 = L(M1) and L2 = L(M2).
 Assume M1 and M2 are single-semi-

infinite-tape TM’s.
 Construct 2-tape Nondeterministic TM M:

1. Guess a break in input w = xy.
2. Move y to second tape.
3. Simulate M1 on x, M2 on y.
4. Accept if both accept.
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Concatenation/Recursive

Can’t use a NTM.
Systematically try each break w = xy.
M1 and M2 will eventually halt for each 

break.
Accept if both accept for any one 

break.
Reject if all breaks tried and none lead 

to acceptance.
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Star

Same ideas work for each case.
RE: guess many breaks, accept if M1

accepts each piece.
Recursive: systematically try all ways to 

break input into some number of 
pieces.
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Reversal

Start by reversing the input.
Then simulate TM for L to accept w if 

and only wR is in L.
Works for either Recursive or RE 

languages.
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Inverse Homomorphism

Apply h to input w.
Simulate TM for L on  h(w).
Accept w iff h(w) is in L.
Works for Recursive or RE.
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Homomorphism/RE

Let L = L(M1).
Design NTM M to take input w and 

guess an x such that h(x) = w.
M accepts whenever M1 accepts x.
Note: won’t work for Recursive 

languages.


