Undecidability

Everything is an Integer
Countable and Uncountable Sets
Turing Machines

Recursive and Recursively
Enumerable Languages

Integers, Strings, and Other Things

Data types have become very
Important as a programming tool.

€ But at another level, there is only one
type, which you may think of as
Integers or strings.

4 . Strings that are programs
are just another way to think about the
same one data type.

- Text

Strings of ASCII or Unicode characters
can be thought of as binary strings,
with 8 or 16 bits/character.

@ Binary strings can be thought of as
Integers.

€ It makes sense to talk about “the i-th
string.”

Binary Strings to Integers

& There's a small glitch:

+ If you think simply of binary integers, then
strings like 101, 0101, 00101,... all appear
to be “the fifth string.”

@ Fix by prepending a “1” to the string
before converting to an integer.

¢ Thus, 101, 0101, and 00101 are the 13t,
21st and 37t strings, respectively.

. Images

¥ Represent an image in (say) GIF.
€ The GIF file is an ASCII string.

Convert string to binary.

Convert binary string to integer.

& Now we have a notion of “the i-th
Image.”

: Proofs

@ A formal proof is a sequence of logical
expressions, each of which follows from
the ones before It.

¥ Encode mathematical expressions of
any kind in Unicode.

€ Convert expression to a binary string
and then an integer.

Proofs — (2)

€ But a proof is a sequence of
expressions, so we need a way to
separate them.

® Also, we need to indicate which
expressions are given and which follow
from previous expressions.

Proofs — (3)

€ Quick-and-dirty way to introduce new
symbols into binary strings:

1. Given a binary string, precede each bit by O.

4 : 101 becomes 010001.

2. Use strings of two or more 1's as the special
symbols.
4 : 111 = “the following expression is

given”; 11 = “end of expression.”

. Encoding Proofs

1110100011111100000101110101...

A given End of Expressi‘k
expression expression S

follows

A given
An ex- expression
pression Notice this follows
1 could not
be part of

the “end”

. Programs

@ Programs are just another kind of data.
@ Represent a program in ASCII.

€ Convert to a binary string, then to an
Integer.

€ Thus, it makes sense to talk about “the
I-th program.”

¢

10

Finite Sets

@ A finite set has a particular integer that
IS the count of the number of members.

¢ : {a, b, c} is a finite set; its
cardinality is 3.

@It is impossible to find a 1-1 mapping

between a finite set and a proper
subset of itself.

11

Infinite Sets

® Formally, an /nfinite set is a set for which
there Is a 1-1 correspondence between
itself and a proper subset of itself.

4 . the positive integers {1, 2, 3,...}
IS an Iinfinite set.

* There Is a 1-1 correspondence 1<->2, 2<->4,
3<->6,... between this set and a proper
subset (the set of even integers).

12

Countable Sets

® A countable set is a set with a 1-1
correspondence with the positive integers.

* Hence, all countable sets are infinite.
¢ . All integers.
* 0<->1; -i <-> 2i; +i <-> 2i+1.
¢ Thus, orderis O, -1, 1, -2, 2, -3, 3,...
4 . set of binary strings, set of Java
programs.

13

. Pairs of Integers

@ Order the pairs of positive integers first
by sum, then by first component:

&®[1,1], [2,1], [1,2], [3.,1], [2,2], [1,3].
[4,1], [3.2],..., [1,4], [5,1],...

@ Interesting exercise: figure out the
function 1(i,])) such that the pair [1,j]
corresponds to the integer f(i,]) In this
order.

14

Enumerations

&® An enumeration of a setis a 1-1
correspondence between the set and
the positive integers.

€ Thus, we have seen enumerations for
strings, programs, proofs, and pairs of
Integers.

15

How Many Languages?

@ Are the languages over {0,1} countable?
@ No; here’s a proof.

@ Suppose we could enumerate all
languages over {0,1} and talk about “the
I-th language.”

@ Consider the language L = { w | w is the
I-th binary string and w Is not In the I-th
language}.

16

Proof — Continued

]
& Clearly, L is a language over {0,1}.
#® Thus, it is the j-th language for som /X
particular J. Recall: L={ w ||wis &he
@ Let x be the j-th string. i-th binary stringland w is

®IsxinlL? ”Wﬂguage}.

* If so, x Is not In L by definition of L. j-th
¢+ If not, then x Is In L by definition of L.

17

Proof — Concluded

€ \We have a contradiction: x is neither in
L nor not In L, so our sole assumption
(that there was an enumeration of the
languages) Is wrong.

€ Comment: This is really bad; there are
more languages than programs.

®E.qg., there are languages with no
membership algorithm.

18

Diagonalization Picture

Strings
1 2 3 4 5 ..
110,110
1

Languages

oo B~ W N PP
)

Diagonalization Picture

Flip each
diagonal
entry

Languages

oo B~ W N PP

Strings
1 2 3 4 5 ..
O™ [110
0
1 N\
1
0

Can’t be
arow —
It disagrees
In an entry
of each row.

20

Turing-Machine Theory

€ The purpose of the theory of Turing
machines Is to prove that certain
specific languages have no algorithm.

@ Start with a language about Turing
machines themselves.

€ Reductions are used to prove more
common questions undecidable.

21

Picture of a Turing Machine

Action: based on
the state and the
tape symbol under

the head: change

State state, rewrite the
symbol and move the

l head one square.

A/B|C| A D

Infinite tape with
squares containing
tape symbols chosen

from a finite alphabet “

Why Turing Machines?

€ \Why not deal with C programs or
something like that?

¢ : You can, but it is easlier to prove
things about TM’s, because they are so
simple.
+ And yet they are as powerful as any
computer.

e More so, Iin fact, since they have infinite memory.

23

Turing-Machine Formalism

® A TM is described by:

A finite set of states (Q, typically).

An /nput alphabet (2, typically).

A tape alphabet (I', typically; contains 2).
A transition function (0, typically).

A start state (q,, In Q, typically).

A blank symbol/ (B, In I'= 2, typically).

€ All tape except for the input is blank initially.
7. A set of final states (F < Q, typically).

BN 2 D =

24

Conventions

€43, b, ... are input symbols.
®... X, Y, Z are tape symbols.

®...w, X, Yy, z are strings of input
symbols.

@0, B,... are strings of tape symbols.

25

The Transition Function

€ Takes two arguments:
1. A state, in Q.
2. A tape symbol inT.

€ 0(q, 2) is either undefined or a triple of
the form (p, Y, D).
¢ pIs a state.
¢ Y Is the new tape symbol.
* Ds a direction, L or R.

26

. Turing Machine

€ This TM scans its input right, looking
for a 1.

@ If it finds one, it changes it to a 0, goes
to final state f, and halts.

@ If it reaches a blank, it changes it to a
1 and moves left.

27

. Turing Machine — (2)

& States = {q (start), f (final)}.
@ Input symbols = {0, 1}.

& Tape symbols = {0, 1, B}.
€05(g, 0) = (g, 0, R).

€0(q,1) =(f, 0, R).

®0(q,B) =(q, 1, L).

28

Simulation of TM

0(q, 0) = (9, 0, R)
5(g, 1) = (f, 0, R)

0(q, B) = (q, 1, L)

29

Simulation of TM

0(q, 0) = (9, 0, R)
5(g, 1) = (f, 0, R)

0(q, B) = (q, 1, L)

30

Simulation of TM

0(q, 0) = (q, 0, R)
5(g, 1) = (f, 0, R)

0(q,B) =(q, 1, L)

31

Simulation of TM

0(q, 0) = (9, 0, R)
5(g, 1) = (f, 0, R)

0(q, B) = (q, 1, L)

32

Simulation of TM

0(q, 0) = (q, 0, R)
5(q, 1) = (f, 0, R)

0(q, B) = (q, 1, L)

33

Simulation of TM

0(q, 0) = (q, 0, R)
5(g, 1) = (f, 0, R)

0(q, B) = (q, 1, L)

l No move is possible.
The TM halts and

B/ B|O[0O|0[B/|... accepts_

34

Instantaneous Descriptions of
a Turing Machine

@ Initially, a TM has a tape consisting of a
string of input symbols surrounded by
an infinity of blanks in both directions.

€ The TM is in the start state, and the
head Is at the leftmost input symbol.

35

T™ ID’s — (2)

@ An ID is a string aqp, where aff
Includes the tape between the leftmost
and rightmost nonblanks.

€ The state q is immediately to the left of
the tape symbol scanned.

@ If g is at the right end, it is scanning B.

¢ |If g Is scanning a B at the left end, then
consecutive B’s at and to the right of g are
part of a.

36

T™ ID’s — (3)

@ As for PDA’s we may use symbols + and
-* 1o represent “becomes Iin one move”

and “becomes In zero or more moves,”
respectively, on ID’s.

4 : The moves of the previous TM
are g00+0qg0+00gt+0g01+00qgl1+000f

37

1.

2.

Formal Definition of Moves

If 0(q, 2) = (p, Y, R), then

® aqZBraYpp

@ If Z is the blank B, then also aqtaYp
If 0(q, 2) = (p, Y, L), then

€ For any X, aXqZBropXYp

€ In addition, gZB+pBYp

38

Languages of a TM

€ A TM defines a language by final state,
as usual.

O®L(M) = {w | gowt+*I, where | is an ID
with a final state}.

€ Or, a TM can accept a language by
halting.

®H(M) = {w | gowt+*I, and there is no
move possible from ID 1}.

39

1.

2.

Equivalence of Accepting and
Halting

If L =L(M), then thereisa TM M’
such that L = H(M’).

If L = H(M), then thereisa TM M”
such that L = L(M”).

40

Proof of 1: Final State ->
Halting

€ Modify M to become M’ as follows:

1. For each final state of M, remove any moves,
so M’ halts In that state.

2. Avoid having M’ accidentally halt.

€ Introduce a new state s, which runs to the right
forever; that is d(s, X) = (s, X, R) for all symbols X.

€ If g is not a final state, and 0(q, X) is undefined, let
0(q, X) = (s, X, R).

41

Proof of 2: Halting -> Final
State

€ Modify M to become M” as follows:

1. Introduce a new state f, the only final
state of M”.

2. f has no moves.

3. If d8(q, X) is undefined for any state q and
symbol X, define it by 8(q, X) = (f, X, R).

42

Recursively Enumerable
Languages

€ We now see that the classes of
languages defined by TM’s using final
state and halting are the same.

@ This class of languages is called the
recursively enumerable languages.

* Why? The term actually predates the
Turing machine and refers to another
notion of computation of functions.

43

Recursive Languages

® An algorithm is a TM, accepting by
final state, that is guaranteed to halt
whether or not it accepts.

@®If L = L(M) for some TM M that is an
algorithm, we say L Is a recursive
language.

* Why? Again, don’t ask; it is a term with a
history.

44

. Recursive
Languages

@®Every CFL is a recursive language.
+ Use the CYK algorithm.

€ Almost anything you can think of is
recursive.

45

