Undecidability

Everything is an Integer
Countable and Uncountable Sets
Turing Machines
Recursive and Recursively
Enumerable Languages

Integers, Strings, and Other Things

- Data types have become very important as a programming tool.
- But at another level, there is only one type, which you may think of as integers or strings.
- Key point: Strings that are programs are just another way to think about the same one data type.

Example: Text

- Strings of ASCII or Unicode characters can be thought of as binary strings, with 8 or 16 bits/character.
- Binary strings can be thought of as integers.
- It makes sense to talk about "the i-th string."

Binary Strings to Integers

- There's a small glitch:
 - If you think simply of binary integers, then strings like 101, 0101, 00101,... all appear to be "the fifth string."
- Fix by prepending a "1" to the string before converting to an integer.
 - Thus, 101, 0101, and 00101 are the 13th, 21st, and 37th strings, respectively.

Example: Images

- Represent an image in (say) GIF.
- The GIF file is an ASCII string.
- Convert string to binary.
- Convert binary string to integer.
- Now we have a notion of "the i-th image."

Example: Proofs

- A formal proof is a sequence of logical expressions, each of which follows from the ones before it.
- Encode mathematical expressions of any kind in Unicode.
- Convert expression to a binary string and then an integer.

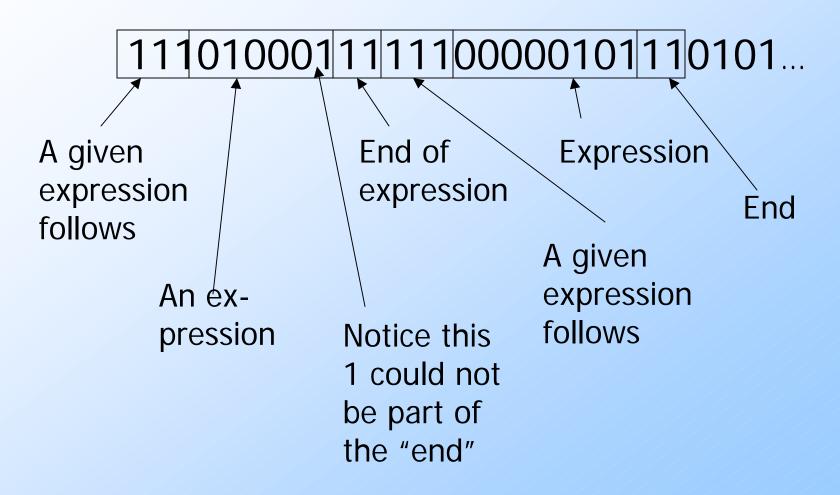
Proofs - (2)

- But a proof is a sequence of expressions, so we need a way to separate them.
- Also, we need to indicate which expressions are given and which follow from previous expressions.

Proofs - (3)

- Quick-and-dirty way to introduce new symbols into binary strings:
 - 1. Given a binary string, precede each bit by 0.
 - ◆ Example: 101 becomes 010001.
 - 2. Use strings of two or more 1's as the special symbols.
 - Example: 111 = "the following expression is given"; 11 = "end of expression."

Example: Encoding Proofs



Example: Programs

- Programs are just another kind of data.
- Represent a program in ASCII.
- Convert to a binary string, then to an integer.
- Thus, it makes sense to talk about "the i-th program."
- Hmm...There aren't all that many programs.

Finite Sets

- ◆ A *finite set* has a particular integer that is the count of the number of members.
- Example: {a, b, c} is a finite set; its cardinality is 3.
- It is impossible to find a 1-1 mapping between a finite set and a proper subset of itself.

Infinite Sets

- ◆Formally, an *infinite set* is a set for which there is a 1-1 correspondence between itself and a proper subset of itself.
- ◆Example: the positive integers {1, 2, 3,...} is an infinite set.
 - There is a 1-1 correspondence 1<->2, 2<->4, 3<->6,... between this set and a proper subset (the set of even integers).

Countable Sets

- ◆A countable set is a set with a 1-1 correspondence with the positive integers.
 - Hence, all countable sets are infinite.
- **Example:** All integers.
 - ◆ 0<->1; -i <-> 2i; +i <-> 2i+1.
 - Thus, order is 0, -1, 1, -2, 2, -3, 3,...
- Examples: set of binary strings, set of Java programs.

Example: Pairs of Integers

- Order the pairs of positive integers first by sum, then by first component:
- ◆[1,1], [2,1], [1,2], [3,1], [2,2], [1,3], [4,1], [3,2],..., [1,4], [5,1],...
- ◆Interesting exercise: figure out the function f(i,j) such that the pair [i,j] corresponds to the integer f(i,j) in this order.

Enumerations

- An enumeration of a set is a 1-1 correspondence between the set and the positive integers.
- Thus, we have seen enumerations for strings, programs, proofs, and pairs of integers.

How Many Languages?

- Are the languages over {0,1} countable?
- No; here's a proof.
- Suppose we could enumerate all languages over {0,1} and talk about "the i-th language."
- Consider the language L = { w | w is the i-th binary string and w is not in the i-th language}.

Proof - Continued

- Clearly, L is a language over {0,1}
- ◆Thus, it is the j-th language for some particular j.
 Recall: L = { w | w is the language for some particular j.
- Let x be the j-th string. i-th binary string and w is
- ♦ Is x in L?
 - If so, x is not in L by definition of L.
 j-th
 - If not, then x is in L by definition of L.

not in the i-th language).

Proof - Concluded

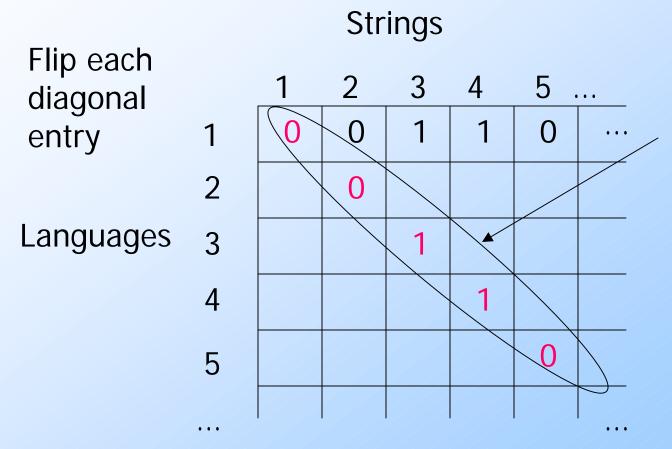
- We have a contradiction: x is neither in L nor not in L, so our sole assumption (that there was an enumeration of the languages) is wrong.
- Comment: This is really bad; there are more languages than programs.
- E.g., there are languages with no membership algorithm.

Diagonalization Picture

Strings

		1	2	3	4	5	•••
Languages	1	1	0	1	1	0	
	2		1				
	3			0			
	4				0		
	5					1	

Diagonalization Picture

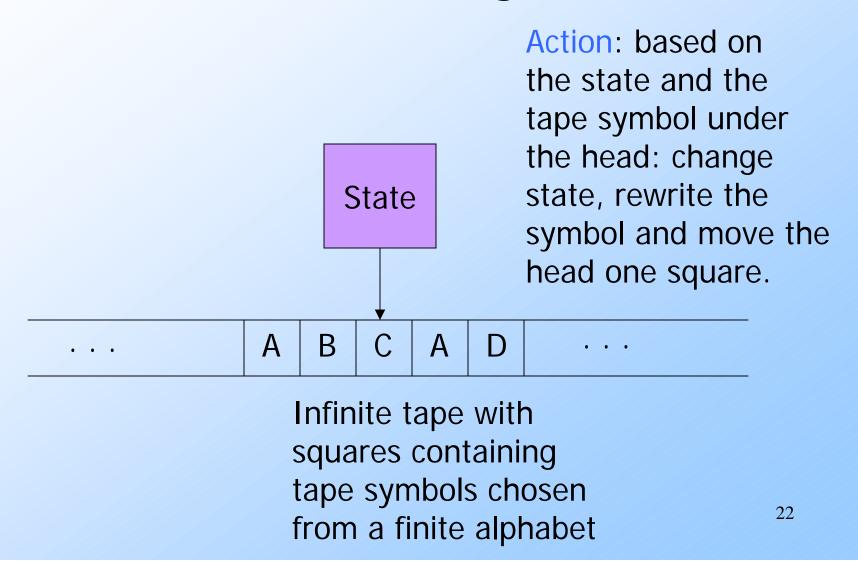


Can't be a row – it disagrees in an entry of each row.

Turing-Machine Theory

- The purpose of the theory of Turing machines is to prove that certain specific languages have no algorithm.
- Start with a language about Turing machines themselves.
- Reductions are used to prove more common questions undecidable.

Picture of a Turing Machine



Why Turing Machines?

- Why not deal with C programs or something like that?
- Answer: You can, but it is easier to prove things about TM's, because they are so simple.
 - And yet they are as powerful as any computer.
 - More so, in fact, since they have infinite memory.

Turing-Machine Formalism

- A TM is described by:
 - A finite set of states (Q, typically).
 - 2. An *input alphabet* (Σ , typically).
 - 3. A *tape alphabet* (Γ , typically; contains Σ).
 - 4. A *transition function* (δ , typically).
 - 5. A *start state* $(q_0, in Q, typically)$.
 - 6. A *blank symbol* (B, in Γ Σ , typically).
 - All tape except for the input is blank initially.
 - 7. A set of *final states* ($F \subseteq Q$, typically).

Conventions

- a, b, ... are input symbols.
- ..., X, Y, Z are tape symbols.
- ..., w, x, y, z are strings of input symbols.
- $\bullet \alpha$, β ,... are strings of tape symbols.

The Transition Function

- Takes two arguments:
 - 1. A state, in Q.
 - 2. A tape symbol in Γ.
- \bullet $\delta(q, Z)$ is either undefined or a triple of the form (p, Y, D).
 - p is a state.
 - Y is the new tape symbol.
 - D is a direction, L or R.

Example: Turing Machine

- This TM scans its input right, looking for a 1.
- If it finds one, it changes it to a 0, goes to final state f, and halts.
- If it reaches a blank, it changes it to a 1 and moves left.

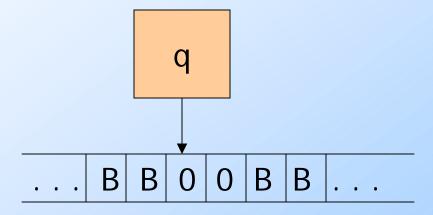
Example: Turing Machine – (2)

- States = {q (start), f (final)}.
- \bullet Input symbols = $\{0, 1\}$.
- \bullet Tape symbols = {0, 1, B}.
- $\bullet \delta(q, 0) = (q, 0, R).$
- $\bullet \delta(q, 1) = (f, 0, R).$
- $\bullet \delta(q, B) = (q, 1, L).$

$$\delta(q, 0) = (q, 0, R)$$

$$\delta(q, 1) = (f, 0, R)$$

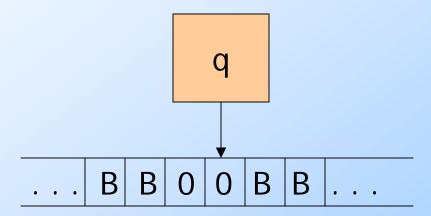
$$\delta(q, B) = (q, 1, L)$$



$$\delta(q, 0) = (q, 0, R)$$

$$\delta(q, 1) = (f, 0, R)$$

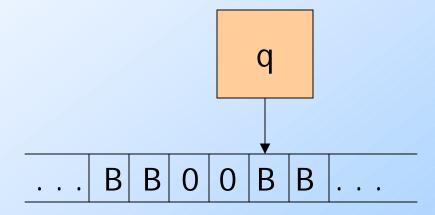
$$\delta(q, B) = (q, 1, L)$$



$$\delta(q, 0) = (q, 0, R)$$

$$\delta(q, 1) = (f, 0, R)$$

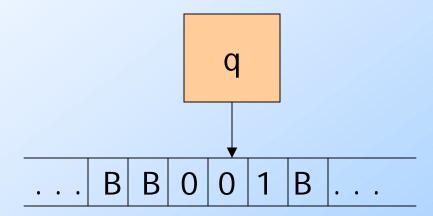
$$\delta(q, B) = (q, 1, L)$$



$$\delta(q, 0) = (q, 0, R)$$

$$\delta(q, 1) = (f, 0, R)$$

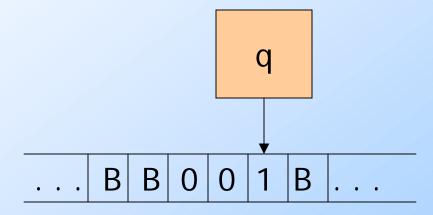
$$\delta(q, B) = (q, 1, L)$$



$$\delta(q, 0) = (q, 0, R)$$

$$\delta(q, 1) = (f, 0, R)$$

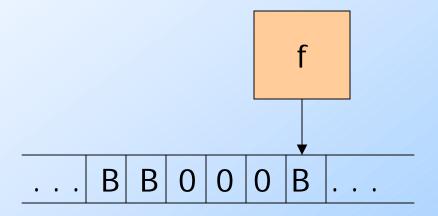
$$\delta(q, B) = (q, 1, L)$$



$$\delta(q, 0) = (q, 0, R)$$

$$\delta(q, 1) = (f, 0, R)$$

$$\delta(q, B) = (q, 1, L)$$



No move is possible. The TM halts and accepts.

Instantaneous Descriptions of a Turing Machine

- Initially, a TM has a tape consisting of a string of input symbols surrounded by an infinity of blanks in both directions.
- ◆The TM is in the start state, and the head is at the leftmost input symbol.

TM ID's - (2)

- An ID is a string αqβ, where αβ includes the tape between the leftmost and rightmost nonblanks.
- The state q is immediately to the left of the tape symbol scanned.
- ◆ If q is at the right end, it is scanning B.
 - If q is scanning a B at the left end, then consecutive B's at and to the right of q are part of α.

TM ID's - (3)

- ◆As for PDA's we may use symbols + and +* to represent "becomes in one move" and "becomes in zero or more moves," respectively, on ID's.
- ◆Example: The moves of the previous TM are q00+0q0+00q+0q01+00q1+000f

Formal Definition of Moves

- 1. If $\delta(q, Z) = (p, Y, R)$, then
 - αqZβ⊦αΥpβ
 - If Z is the blank B, then also $\alpha q + \alpha Y p$
- 2. If $\delta(q, Z) = (p, Y, L)$, then
 - ♦ For any X, α XqZβ+ α pXYβ
 - In addition, qZβ+pBYβ

Languages of a TM

- A TM defines a language by final state, as usual.
- ◆L(M) = {w | $q_0w \vdash *I$, where I is an ID with a final state}.
- Or, a TM can accept a language by halting.
- ArrH(M) = {w | q₀w⊦*I, and there is no move possible from ID I}.

Equivalence of Accepting and Halting

- 1. If L = L(M), then there is a TM M' such that L = H(M').
- 2. If L = H(M), then there is a TM M" such that L = L(M'').

Proof of 1: Final State -> Halting

- Modify M to become M' as follows:
 - 1. For each final state of M, remove any moves, so M' halts in that state.
 - 2. Avoid having M' accidentally halt.
 - Introduce a new state s, which runs to the right forever; that is $\delta(s, X) = (s, X, R)$ for all symbols X.
 - If q is not a final state, and $\delta(q, X)$ is undefined, let $\delta(q, X) = (s, X, R)$.

Proof of 2: Halting -> Final State

- Modify M to become M" as follows:
 - Introduce a new state f, the only final state of M".
 - 2. f has no moves.
 - 3. If $\delta(q, X)$ is undefined for any state q and symbol X, define it by $\delta(q, X) = (f, X, R)$.

Recursively Enumerable Languages

- We now see that the classes of languages defined by TM's using final state and halting are the same.
- This class of languages is called the recursively enumerable languages.
 - Why? The term actually predates the Turing machine and refers to another notion of computation of functions.

Recursive Languages

- ◆An algorithm is a TM, accepting by final state, that is guaranteed to halt whether or not it accepts.
- ◆If L = L(M) for some TM M that is an algorithm, we say L is a recursive language.
 - Why? Again, don't ask; it is a term with a history.

Example: Recursive Languages

- Every CFL is a recursive language.
 - Use the CYK algorithm.
- Almost anything you can think of is recursive.