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Properties of Context-Free 
Languages

Decision Properties
Closure Properties
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Summary of Decision Properties

 As usual, when we talk about “a CFL” 
we really mean “a representation for 
the CFL, e.g., a CFG or a PDA 
accepting by final state or empty stack.

 There are algorithms to decide if:
1. String w is in CFL L.
2. CFL L is empty.
3. CFL L is infinite.
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Non-Decision Properties

Many questions that can be decided for 
regular sets cannot be decided for CFL’s.
Example: Are two CFL’s the same?
Example: Are two CFL’s disjoint?
 How would you do that for regular languages?

Need theory of Turing machines and 
decidability to prove no algorithm exists.
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Testing Emptiness

We already did this.
We learned to eliminate useless 

variables.
If the start symbol is one of these, then 

the CFL is empty; otherwise not.



5

Testing Membership

Want to know if string w is in L(G).
Assume G is in CNF.
 Or convert the given grammar to CNF.
 w = ε is a special case, solved by testing if 

the start symbol is nullable.

Algorithm (CYK ) is a good example of 
dynamic programming and runs in time 
O(n3), where n = |w|.
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CYK Algorithm

Let w = a1…an.
We construct an n-by-n triangular array 

of sets of variables.
Xij = {variables A | A =>* ai…aj}.
Induction on j–i+1.
 The length of the derived string.

Finally, ask if S is in X1n.
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CYK Algorithm – (2)

Basis: Xii = {A | A -> ai is a 
production}.
Induction: Xij = {A | there is a 

production A -> BC and an integer k, 
with i < k < j, such that B is in Xik and C 
is in Xk+1,j.
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Example: CYK Algorithm
Grammar: S -> AB, A -> BC | a, B -> AC | b, C -> a | b

String w = ababa

X11={A,C} X22={B,C}  X33={A,C} X44={B,C}    X55={A,C}

X12={B,S} X23={A}  X34={B,S}   X45={A}
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Example: CYK Algorithm
Grammar: S -> AB, A -> BC | a, B -> AC | b, C -> a | b

String w = ababa

X11={A,C} X22={B,C}  X33={A,C} X44={B,C}    X55={A,C}

X12={B,S} X23={A}  X34={B,S}   X45={A}

X13={} Yields nothing
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Example: CYK Algorithm
Grammar: S -> AB, A -> BC | a, B -> AC | b, C -> a | b

String w = ababa

X11={A,C} X22={B,C}  X33={A,C} X44={B,C}    X55={A,C}

X12={B,S} X23={A}  X34={B,S}   X45={A}

X13={A} X24={B,S}    X35={A}
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Example: CYK Algorithm
Grammar: S -> AB, A -> BC | a, B -> AC | b, C -> a | b

String w = ababa

X11={A,C} X22={B,C}  X33={A,C} X44={B,C}    X55={A,C}

X12={B,S} X23={A}  X34={B,S}   X45={A}

X13={A} X24={B,S}    X35={A}

X14={B,S}
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Example: CYK Algorithm
Grammar: S -> AB, A -> BC | a, B -> AC | b, C -> a | b

String w = ababa

X11={A,C} X22={B,C}  X33={A,C} X44={B,C}    X55={A,C}

X12={B,S} X23={A}  X34={B,S}   X45={A}

X13={A} X24={B,S}    X35={A}

X14={B,S} X25={A}

X15={A}
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Testing Infiniteness

The idea is essentially the same as for 
regular languages.
Use the pumping lemma constant n.
If there is a string in the language of 

length between n and 2n-1, then the 
language is infinite; otherwise not.
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Closure Properties of CFL’s

CFL’s are closed under union, 
concatenation, and Kleene closure.
Also, under reversal, homomorphisms

and inverse homomorphisms.
But not under intersection or 

difference.
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Closure of CFL’s Under Union

Let L and M be CFL’s with grammars G 
and H, respectively.
Assume G and H have no variables in 

common.
 Names of variables do not affect the 

language.

Let S1 and S2 be the start symbols of G 
and H.



16

Closure Under Union – (2)

Form a new grammar for L  M by 
combining all the symbols and 
productions of G and H.
Then, add a new start symbol S.
Add productions S -> S1 | S2.
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Closure Under Union – (3)

In the new grammar, all derivations 
start with S.
The first step replaces S by either S1 or 

S2.
In the first case, the result must be a 

string in L(G) = L, and in the second 
case a string in L(H) = M.
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Closure of CFL’s Under 
Concatenation

Let L and M be CFL’s with grammars G 
and H, respectively.
Assume G and H have no variables in 

common.
Let S1 and S2 be the start symbols of G 

and H.
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Closure Under Concatenation – (2)

Form a new grammar for LM by 
starting with all symbols and 
productions of G and H.
Add a new start symbol S.
Add production S -> S1S2.
Every derivation from S results in a 

string in L followed by one in M.
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Closure Under Star

Let L have grammar G, with start symbol S1.
Form a new grammar for L* by introducing 

to G a new start symbol S and the 
productions S -> S1S | ε.
A rightmost derivation from S generates a 

sequence of zero or more S1’s, each of 
which generates some string in L.
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Closure of CFL’s Under 
Reversal

If L is a CFL with grammar G, form a 
grammar for LR by reversing the body 
of every production.
Example: Let G have S -> 0S1 | 01.
The reversal of L(G) has grammar       

S -> 1S0 | 10. 
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Closure of CFL’s Under 
Homomorphism

Let L be a CFL with grammar G.
Let h be a homomorphism on the 

terminal symbols of G.
Construct a grammar for h(L) by 

replacing each terminal symbol a by 
h(a).
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Example: Closure Under 
Homomorphism

G has productions S -> 0S1 | 01.
h is defined by h(0) = ab, h(1) = ε.
h(L(G)) has the grammar with 

productions S -> abS | ab.
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Closure of CFL’s Under 
Inverse Homomorphism

Here, grammars don’t help us, but a 
PDA construction serves nicely.
Let L = L(P) for some PDA P.
Construct PDA P’ to accept h-1(L).
P’ simulates P, but keeps, as one 

component of a two-component state a 
buffer that holds the result of applying 
h to one input symbol.
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Architecture of P’

Buffer

State of P

Input:  0 0 1 1
h(0)

Stack
of P

Read first remaining
symbol in buffer as
if it were input to P.
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Formal Construction of P’

 States are pairs [q, w], where:
1. q is a state of P.
2. w is a suffix of h(a) for some symbol a.
 Thus, only a finite number of possible values 

for w.

 Stack symbols of P’ are those of P.
 Start state of P’ is [q0 ,ε].
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Construction of P’ – (2)

Input symbols of P’ are the symbols to 
which h applies.
Final states of P’ are the states [q, ε] 

such that q is a final state of P.
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Transitions of P’

1. δ’([q, ε], a, X) = {([q, h(a)], X)} for 
any input symbol a of P’ and any stack 
symbol X.
 When the buffer is empty, P’ can reload it.

2. δ’([q, bw], ε, X) contains ([p, w], ) if 
δ(q, b, X) contains (p, ), where b is 
either an input symbol of P or ε.
 Simulate P from the buffer.
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Proving Correctness of P’

We need to show that L(P’) = h-1(L(P)).
Key argument: P’ makes the transition 

([q0, ε], w, Z0)⊦*([q, x], ε, )              
if and only if P makes transition                  
(q0, y, Z0) ⊦*(q, ε, ), h(w) = yx, and x 
is a suffix of the last symbol of w.
Proof in both directions is an induction 

on the number of moves made.
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Nonclosure Under Intersection

Unlike the regular languages, the class 
of CFL’s is not closed under .
We know that L1 = {0n1n2n | n > 1} is 

not a CFL (use the pumping lemma).
However, L2 = {0n1n2i | n > 1, i > 1} is.
 CFG: S -> AB, A -> 0A1 | 01, B -> 2B | 2.

So is L3 = {0i1n2n | n > 1, i > 1}.
But L1 = L2  L3.
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Nonclosure Under Difference

We can prove something more general:
 Any class of languages that is closed under 

difference is closed under intersection.

Proof: L  M = L – (L – M).
Thus, if CFL’s were closed under 

difference, they would be closed under 
intersection, but they are not.
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Intersection with a Regular 
Language

Intersection of two CFL’s need not be 
context free.
But the intersection of a CFL with a 

regular language is always a CFL.
Proof involves running a DFA in parallel 

with a PDA, and noting that the 
combination is a PDA.
 PDA’s accept by final state.
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DFA and PDA in Parallel

DFA

PDA

S
t
a
c
k

Input Accept
if both
accept

Looks like the
state of one PDA
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Formal Construction

Let the DFA A have transition function δA.
Let the PDA P have transition function δP.

States of combined PDA are [q,p], where 
q is a state of A and p a state of P.
δ([q,p], a, X) contains ([δA(q,a),r], ) if 
δP(p, a, X) contains (r, ).
 Note a could be , in which case δA(q,a) = q.
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Formal Construction – (2)

Final states of combined PDA are those 
[q,p] such that q is a final state of A 
and p is an accepting state of P.
Initial state is the pair ([q0,p0] 

consisting of the initial states of each.
Easy induction: ([q0,p0], w, Z0)⊦*  

([q,p], , ) if and only if δA(q0,w) = q 
and in P: (p0, w, Z0)⊦*(p, , ).


