
1

Properties of Context-Free
Languages

Decision Properties
Closure Properties

2

Summary of Decision Properties

 As usual, when we talk about “a CFL”
we really mean “a representation for
the CFL, e.g., a CFG or a PDA
accepting by final state or empty stack.

 There are algorithms to decide if:
1. String w is in CFL L.
2. CFL L is empty.
3. CFL L is infinite.

3

Non-Decision Properties

Many questions that can be decided for
regular sets cannot be decided for CFL’s.
Example: Are two CFL’s the same?
Example: Are two CFL’s disjoint?
 How would you do that for regular languages?

Need theory of Turing machines and
decidability to prove no algorithm exists.

4

Testing Emptiness

We already did this.
We learned to eliminate useless

variables.
If the start symbol is one of these, then

the CFL is empty; otherwise not.

5

Testing Membership

Want to know if string w is in L(G).
Assume G is in CNF.
 Or convert the given grammar to CNF.
 w = ε is a special case, solved by testing if

the start symbol is nullable.

Algorithm (CYK) is a good example of
dynamic programming and runs in time
O(n3), where n = |w|.

6

CYK Algorithm

Let w = a1…an.
We construct an n-by-n triangular array

of sets of variables.
Xij = {variables A | A =>* ai…aj}.
Induction on j–i+1.
 The length of the derived string.

Finally, ask if S is in X1n.

7

CYK Algorithm – (2)

Basis: Xii = {A | A -> ai is a
production}.
Induction: Xij = {A | there is a

production A -> BC and an integer k,
with i < k < j, such that B is in Xik and C
is in Xk+1,j.

8

Example: CYK Algorithm
Grammar: S -> AB, A -> BC | a, B -> AC | b, C -> a | b

String w = ababa

X11={A,C} X22={B,C} X33={A,C} X44={B,C} X55={A,C}

X12={B,S} X23={A} X34={B,S} X45={A}

9

Example: CYK Algorithm
Grammar: S -> AB, A -> BC | a, B -> AC | b, C -> a | b

String w = ababa

X11={A,C} X22={B,C} X33={A,C} X44={B,C} X55={A,C}

X12={B,S} X23={A} X34={B,S} X45={A}

X13={} Yields nothing

10

Example: CYK Algorithm
Grammar: S -> AB, A -> BC | a, B -> AC | b, C -> a | b

String w = ababa

X11={A,C} X22={B,C} X33={A,C} X44={B,C} X55={A,C}

X12={B,S} X23={A} X34={B,S} X45={A}

X13={A} X24={B,S} X35={A}

11

Example: CYK Algorithm
Grammar: S -> AB, A -> BC | a, B -> AC | b, C -> a | b

String w = ababa

X11={A,C} X22={B,C} X33={A,C} X44={B,C} X55={A,C}

X12={B,S} X23={A} X34={B,S} X45={A}

X13={A} X24={B,S} X35={A}

X14={B,S}

12

Example: CYK Algorithm
Grammar: S -> AB, A -> BC | a, B -> AC | b, C -> a | b

String w = ababa

X11={A,C} X22={B,C} X33={A,C} X44={B,C} X55={A,C}

X12={B,S} X23={A} X34={B,S} X45={A}

X13={A} X24={B,S} X35={A}

X14={B,S} X25={A}

X15={A}

13

Testing Infiniteness

The idea is essentially the same as for
regular languages.
Use the pumping lemma constant n.
If there is a string in the language of

length between n and 2n-1, then the
language is infinite; otherwise not.

14

Closure Properties of CFL’s

CFL’s are closed under union,
concatenation, and Kleene closure.
Also, under reversal, homomorphisms

and inverse homomorphisms.
But not under intersection or

difference.

15

Closure of CFL’s Under Union

Let L and M be CFL’s with grammars G
and H, respectively.
Assume G and H have no variables in

common.
 Names of variables do not affect the

language.

Let S1 and S2 be the start symbols of G
and H.

16

Closure Under Union – (2)

Form a new grammar for L M by
combining all the symbols and
productions of G and H.
Then, add a new start symbol S.
Add productions S -> S1 | S2.

17

Closure Under Union – (3)

In the new grammar, all derivations
start with S.
The first step replaces S by either S1 or

S2.
In the first case, the result must be a

string in L(G) = L, and in the second
case a string in L(H) = M.

18

Closure of CFL’s Under
Concatenation

Let L and M be CFL’s with grammars G
and H, respectively.
Assume G and H have no variables in

common.
Let S1 and S2 be the start symbols of G

and H.

19

Closure Under Concatenation – (2)

Form a new grammar for LM by
starting with all symbols and
productions of G and H.
Add a new start symbol S.
Add production S -> S1S2.
Every derivation from S results in a

string in L followed by one in M.

20

Closure Under Star

Let L have grammar G, with start symbol S1.
Form a new grammar for L* by introducing

to G a new start symbol S and the
productions S -> S1S | ε.
A rightmost derivation from S generates a

sequence of zero or more S1’s, each of
which generates some string in L.

21

Closure of CFL’s Under
Reversal

If L is a CFL with grammar G, form a
grammar for LR by reversing the body
of every production.
Example: Let G have S -> 0S1 | 01.
The reversal of L(G) has grammar

S -> 1S0 | 10.

22

Closure of CFL’s Under
Homomorphism

Let L be a CFL with grammar G.
Let h be a homomorphism on the

terminal symbols of G.
Construct a grammar for h(L) by

replacing each terminal symbol a by
h(a).

23

Example: Closure Under
Homomorphism

G has productions S -> 0S1 | 01.
h is defined by h(0) = ab, h(1) = ε.
h(L(G)) has the grammar with

productions S -> abS | ab.

24

Closure of CFL’s Under
Inverse Homomorphism

Here, grammars don’t help us, but a
PDA construction serves nicely.
Let L = L(P) for some PDA P.
Construct PDA P’ to accept h-1(L).
P’ simulates P, but keeps, as one

component of a two-component state a
buffer that holds the result of applying
h to one input symbol.

25

Architecture of P’

Buffer

State of P

Input: 0 0 1 1
h(0)

Stack
of P

Read first remaining
symbol in buffer as
if it were input to P.

26

Formal Construction of P’

 States are pairs [q, w], where:
1. q is a state of P.
2. w is a suffix of h(a) for some symbol a.
 Thus, only a finite number of possible values

for w.

 Stack symbols of P’ are those of P.
 Start state of P’ is [q0 ,ε].

27

Construction of P’ – (2)

Input symbols of P’ are the symbols to
which h applies.
Final states of P’ are the states [q, ε]

such that q is a final state of P.

28

Transitions of P’

1. δ’([q, ε], a, X) = {([q, h(a)], X)} for
any input symbol a of P’ and any stack
symbol X.
 When the buffer is empty, P’ can reload it.

2. δ’([q, bw], ε, X) contains ([p, w],) if
δ(q, b, X) contains (p,), where b is
either an input symbol of P or ε.
 Simulate P from the buffer.

29

Proving Correctness of P’

We need to show that L(P’) = h-1(L(P)).
Key argument: P’ makes the transition

([q0, ε], w, Z0)⊦*([q, x], ε,)
if and only if P makes transition
(q0, y, Z0) ⊦*(q, ε,), h(w) = yx, and x
is a suffix of the last symbol of w.
Proof in both directions is an induction

on the number of moves made.

30

Nonclosure Under Intersection

Unlike the regular languages, the class
of CFL’s is not closed under .
We know that L1 = {0n1n2n | n > 1} is

not a CFL (use the pumping lemma).
However, L2 = {0n1n2i | n > 1, i > 1} is.
 CFG: S -> AB, A -> 0A1 | 01, B -> 2B | 2.

So is L3 = {0i1n2n | n > 1, i > 1}.
But L1 = L2 L3.

31

Nonclosure Under Difference

We can prove something more general:
 Any class of languages that is closed under

difference is closed under intersection.

Proof: L M = L – (L – M).
Thus, if CFL’s were closed under

difference, they would be closed under
intersection, but they are not.

32

Intersection with a Regular
Language

Intersection of two CFL’s need not be
context free.
But the intersection of a CFL with a

regular language is always a CFL.
Proof involves running a DFA in parallel

with a PDA, and noting that the
combination is a PDA.
 PDA’s accept by final state.

33

DFA and PDA in Parallel

DFA

PDA

S
t
a
c
k

Input Accept
if both
accept

Looks like the
state of one PDA

34

Formal Construction

Let the DFA A have transition function δA.
Let the PDA P have transition function δP.

States of combined PDA are [q,p], where
q is a state of A and p a state of P.
δ([q,p], a, X) contains ([δA(q,a),r],) if
δP(p, a, X) contains (r,).
 Note a could be , in which case δA(q,a) = q.

35

Formal Construction – (2)

Final states of combined PDA are those
[q,p] such that q is a final state of A
and p is an accepting state of P.
Initial state is the pair ([q0,p0]

consisting of the initial states of each.
Easy induction: ([q0,p0], w, Z0)⊦*

([q,p], ,) if and only if δA(q0,w) = q
and in P: (p0, w, Z0)⊦*(p, ,).

