Properties of Context-Free Languages

Decision Properties Closure Properties

Summary of Decision Properties

As usual, when we talk about "a CFL" we really mean "a representation for the CFL, e.g., a CFG or a PDA accepting by final state or empty stack.

- There are algorithms to decide if:
 - 1. String w is in CFL L.
 - 2. CFL L is empty.
 - 3. CFL L is infinite.

Non-Decision Properties

Many questions that can be decided for regular sets cannot be decided for CFL's.
Example: Are two CFL's the same?
Example: Are two CFL's disjoint?
How would you do that for regular languages?
Need theory of Turing machines and decidability to prove no algorithm exists.

Testing Emptiness

We already did this.

We learned to eliminate useless variables.

If the start symbol is one of these, then the CFL is empty; otherwise not.

Testing Membership

Want to know if string w is in L(G).
Assume G is in CNF.

- Or convert the given grammar to CNF.
- w = ε is a special case, solved by testing if the start symbol is nullable.

Algorithm (*CYK*) is a good example of dynamic programming and runs in time O(n³), where n = |w|.

CYK Algorithm

•Let $w = a_1 \dots a_n$.

 We construct an n-by-n triangular array of sets of variables.

 $\bigstar X_{ij} = \{ variables A \mid A = >^* a_i \dots a_j \}.$

Induction on j-i+1.

The length of the derived string.

• Finally, ask if S is in X_{1n} .

CYK Algorithm – (2)

• Basis: $X_{ii} = \{A \mid A \rightarrow a_i \text{ is a production}\}$.

◆ Induction: $X_{ij} = \{A \mid \text{there is a} production A -> BC and an integer k, with i ≤ k < j, such that B is in X_{ik} and C is in X_{k+1,j}.$

Example: CYK Algorithm Grammar: S -> AB, A -> BC | a, B -> AC | b, C -> a | b String w = ababa

$$X_{12} = \{B, S\}$$
 $X_{23} = \{A\}$ $X_{34} = \{B, S\}$ $X_{45} = \{A\}$
 $X_{11} = \{A, C\}$ $X_{22} = \{B, C\}$ $X_{33} = \{A, C\}$ $X_{44} = \{B, C\}$ $X_{55} = \{A, C\}$

Example: CYK Algorithm

Grammar: S -> AB, A -> BC | a, B -> AC | b, C -> a | b String w = ababa

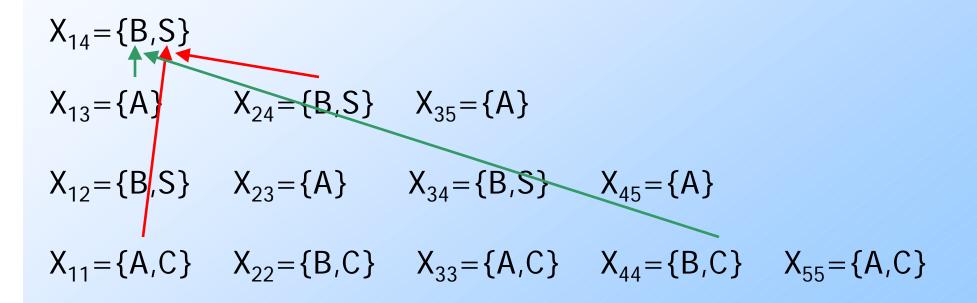
 $X_{13} = \{\}$ Yields nothing $X_{12} = \{B, S\}$ $X_{23} = \{A\}$ $X_{34} = \{B, S\}$ $X_{45} = \{A\}$ $X_{11} = \{A, C\}$ $X_{22} = \{B, C\}$ $X_{33} = \{A, C\}$ $X_{44} = \{B, C\}$ $X_{55} = \{A, C\}$ **Example:** CYK Algorithm

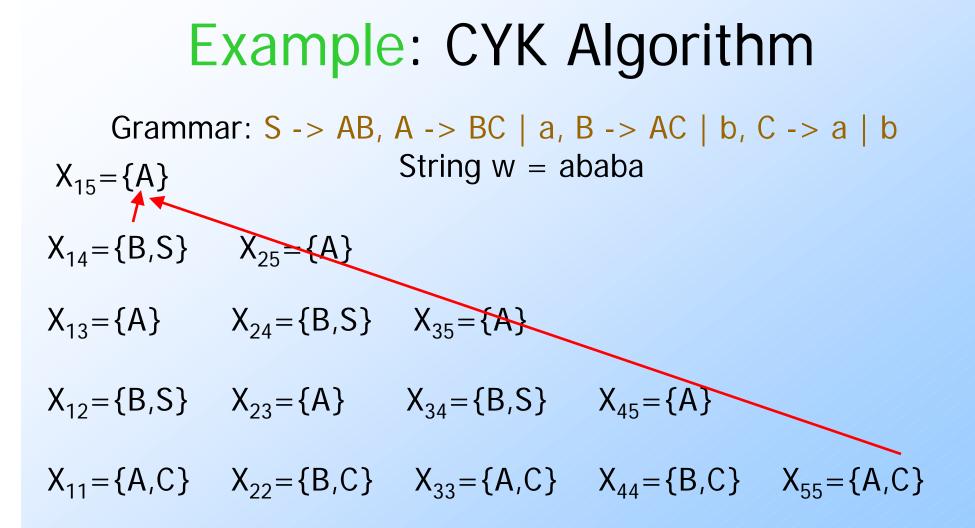
Grammar: S -> AB, A -> BC | a, B -> AC | b, C -> a | b String w = ababa

$$X_{13} = \{A\} \qquad X_{24} = \{B, S\} \qquad X_{35} = \{A\}$$
$$X_{12} = \{B, S\} \qquad X_{23} = \{A\} \qquad X_{34} = \{B, S\} \qquad X_{45} = \{A\}$$
$$X_{11} = \{A, C\} \qquad X_{22} = \{B, C\} \qquad X_{33} = \{A, C\} \qquad X_{44} = \{B, C\} \qquad X_{55} = \{A, C\}$$

Example: CYK Algorithm

Grammar: S -> AB, A -> BC | a, B -> AC | b, C -> a | b String w = ababa





Testing Infiniteness

The idea is essentially the same as for regular languages.

Use the pumping lemma constant n.

If there is a string in the language of length between n and 2n-1, then the language is infinite; otherwise not.

Closure Properties of CFL's

 CFL's are closed under union, concatenation, and Kleene closure.

- Also, under reversal, homomorphisms and inverse homomorphisms.
- But not under intersection or difference.

Closure of CFL's Under Union

- Let L and M be CFL's with grammars G and H, respectively.
- Assume G and H have no variables in common.
 - Names of variables do not affect the language.
- Let S₁ and S₂ be the start symbols of G and H.

Closure Under Union – (2)

◆ Form a new grammar for L ∪ M by combining all the symbols and productions of G and H.

Then, add a new start symbol S.

• Add productions $S \rightarrow S_1 \mid S_2$.

Closure Under Union – (3)

- In the new grammar, all derivations start with S.
- The first step replaces S by either S₁ or S₂.
- In the first case, the result must be a string in L(G) = L, and in the second case a string in L(H) = M.

Closure of CFL's Under Concatenation

- Let L and M be CFL's with grammars G and H, respectively.
- Assume G and H have no variables in common.
- Let S₁ and S₂ be the start symbols of G and H.

Closure Under Concatenation – (2)

Form a new grammar for LM by starting with all symbols and productions of G and H.

- Add a new start symbol S.
- Add production $S \rightarrow S_1S_2$.
- Every derivation from S results in a string in L followed by one in M.

Closure Under Star

Let L have grammar G, with start symbol S₁.
 Form a new grammar for L* by introducing to G a new start symbol S and the productions S -> S₁S | ε.

A rightmost derivation from S generates a sequence of zero or more S₁'s, each of which generates some string in L.

Closure of CFL's Under Reversal

- If L is a CFL with grammar G, form a grammar for L^R by reversing the body of every production.
- Example: Let G have S -> 0S1 | 01.
- The reversal of L(G) has grammar
 S -> 1S0 | 10.

Closure of CFL's Under Homomorphism

Let L be a CFL with grammar G.
Let h be a homomorphism on the terminal symbols of G.

Construct a grammar for h(L) by replacing each terminal symbol a by h(a).

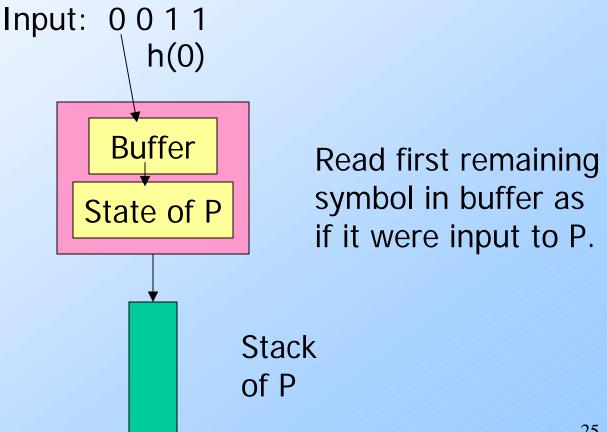
Example: Closure Under Homomorphism

G has productions S -> 0S1 | 01.
h is defined by h(0) = ab, h(1) = ε.
h(L(G)) has the grammar with productions S -> abS | ab.

Closure of CFL's Under Inverse Homomorphism

 Here, grammars don't help us, but a PDA construction serves nicely. \bullet Let L = L(P) for some PDA P. • Construct PDA P' to accept $h^{-1}(L)$. P' simulates P, but keeps, as one component of a two-component state a buffer that holds the result of applying h to one input symbol.

Architecture of P'



Formal Construction of P'

- States are pairs [q, w], where:
 1. q is a state of P.
 - 2. w is a suffix of h(a) for some symbol a.
 - Thus, only a finite number of possible values for w.
- ◆ Stack symbols of P' are those of P.
 ◆ Start state of P' is [q₀, ∈].

Construction of P' – (2)

 Input symbols of P' are the symbols to which h applies.

Final states of P' are the states [q, c] such that q is a final state of P.

Transitions of P'

1. $\delta'([q, \epsilon], a, X) = \{([q, h(a)], X)\}$ for any input symbol *a* of P' and any stack symbol X.

When the buffer is empty, P' can reload it.
2. δ'([q, bw], ε, X) contains ([p, w], α) if δ(q, b, X) contains (p, α), where b is either an input symbol of P or ε.

Simulate P from the buffer.

Proving Correctness of P'

We need to show that L(P') = h⁻¹(L(P)).
Key argument: P' makes the transition ([q₀, ε], w, Z₀) +*([q, x], ε, α) if and only if P makes transition (q₀, y, Z₀) +*(q, ε, α), h(w) = yx, and x is a suffix of the last symbol of w.

 Proof in both directions is an induction on the number of moves made.

Nonclosure Under Intersection

- ◆Unlike the regular languages, the class of CFL's is not closed under ∩.
- We know that $L_1 = \{0^n 1^n 2^n \mid n \ge 1\}$ is not a CFL (use the pumping lemma).
- However, L₂ = {0ⁿ1ⁿ2ⁱ | n ≥ 1, i ≥ 1} is.
 CFG: S -> AB, A -> 0A1 | 01, B -> 2B | 2.
 So is L₃ = {0ⁱ1ⁿ2ⁿ | n ≥ 1, i ≥ 1}.
 But L₁ = L₂ ∩ L₃.

Nonclosure Under Difference

We can prove something more general:

 Any class of languages that is closed under difference is closed under intersection.

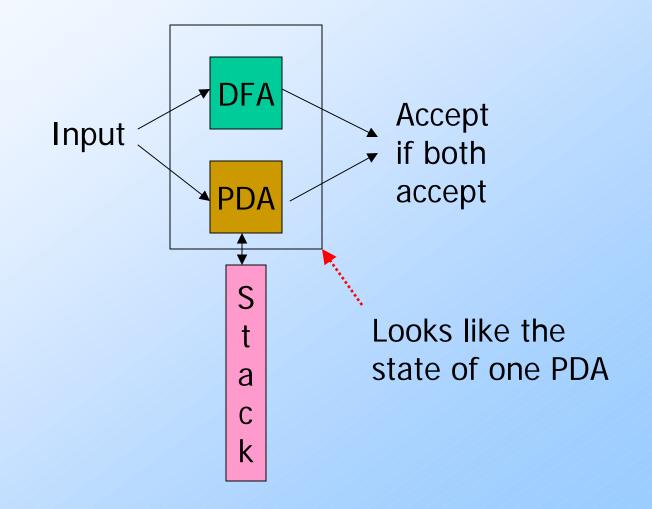
• Proof: $L \cap M = L - (L - M)$.

Thus, if CFL's were closed under difference, they would be closed under intersection, but they are not.

Intersection with a Regular Language

- Intersection of two CFL's need not be context free.
- But the intersection of a CFL with a regular language is always a CFL.
- Proof involves running a DFA in parallel with a PDA, and noting that the combination is a PDA.
 - PDA's accept by final state.

DFA and PDA in Parallel



Formal Construction

Let the DFA A have transition function δ_A.
Let the PDA P have transition function δ_P.
States of combined PDA are [q,p], where q is a state of A and p a state of P.
δ([q,p], a, X) contains ([δ_A(q,a),r], α) if δ_P(p, a, X) contains (r, α).
Note a could be ε, in which case δ_A(q,a) = q.

Formal Construction – (2)

Final states of combined PDA are those [q,p] such that q is a final state of A and p is an accepting state of P. \bullet Initial state is the pair ([q₀, p₀] consisting of the initial states of each. • Easy induction: $([q_0, p_0], w, Z_0) \vdash *$ ([q,p], ε , α) if and only if $\delta_A(q_0, w) = q$ and in P: $(p_0, w, Z_0) \vdash *(p, \varepsilon, \alpha)$.