The Pumping Lemma for CFL's

Statement Applications

Intuition

 Recall the pumping lemma for regular languages.

It told us that if there was a string long enough to cause a cycle in the DFA for the language, then we could "pump" the cycle and discover an infinite sequence of strings that had to be in the language.

Intuition – (2)

- For CFL's the situation is a little more complicated.
- We can always find two pieces of any sufficiently long string to "pump" in tandem.
 - That is: if we repeat each of the two pieces the same number of times, we get another string in the language.

Statement of the CFL Pumping Lemma

For every context-free language L There is an integer n, such that For every string z in L of length \geq n There exists z = uvwxy such that:

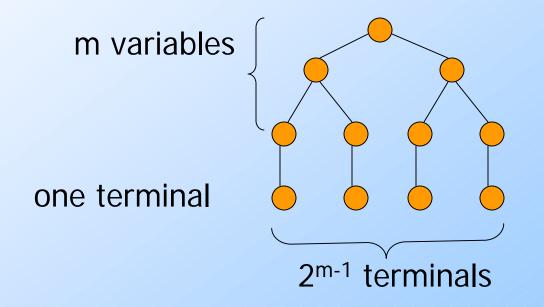
- 1. $|VWX| \leq n$.
- 2. |vx| > 0.
- 3. For all i \geq 0, uvⁱwxⁱy is in L.

Proof of the Pumping Lemma

◆ Start with a CNF grammar for L – {€}.
◆ Let the grammar have m variables.
◆ Pick n = 2^m.
◆ Let z, of length ≥ n, be in L.
◆ We claim (*"Lemma 1 "*) that a parse tree with yield z must have a path of length m+2 or more.

Proof of Lemma 1

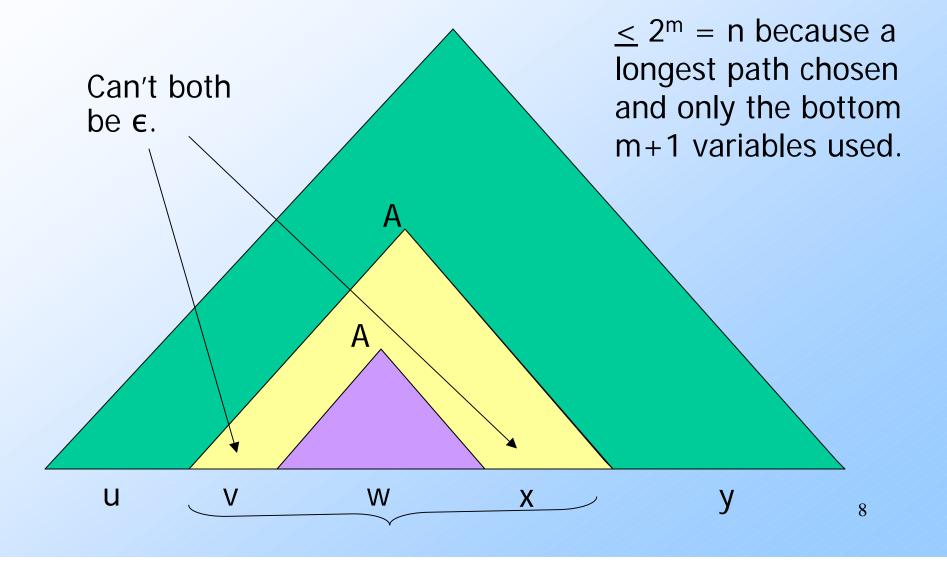
 If all paths in the parse tree of a CNF grammar are of length < m+1, then the longest yield has length 2^{m-1}, as in:



Back to the Proof of the Pumping Lemma

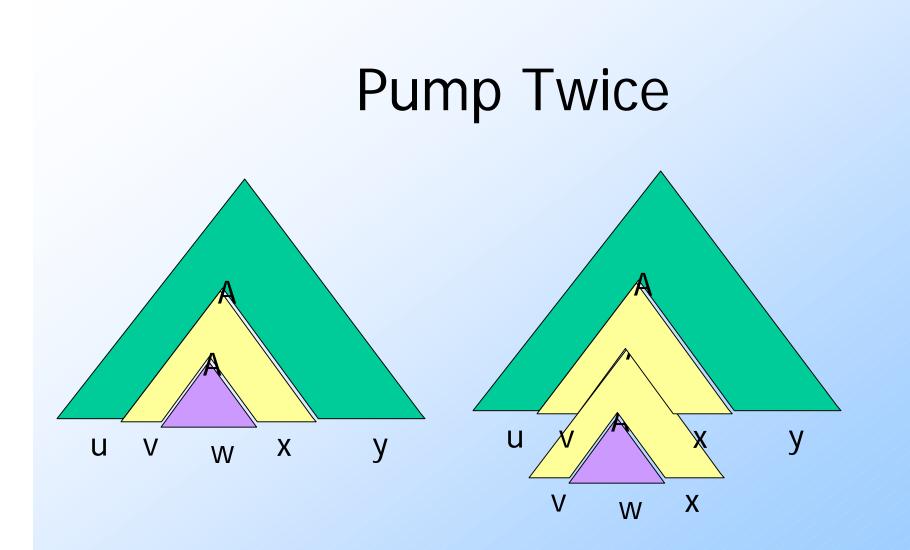
Now we know that the parse tree for z has a path with at least m+1 variables.
Consider some longest path.
There are only m different variables, so among the lowest m+1 we can find two nodes with the same label, say A.
The parse tree thus looks like:

Parse Tree in the Pumping-Lemma Proof

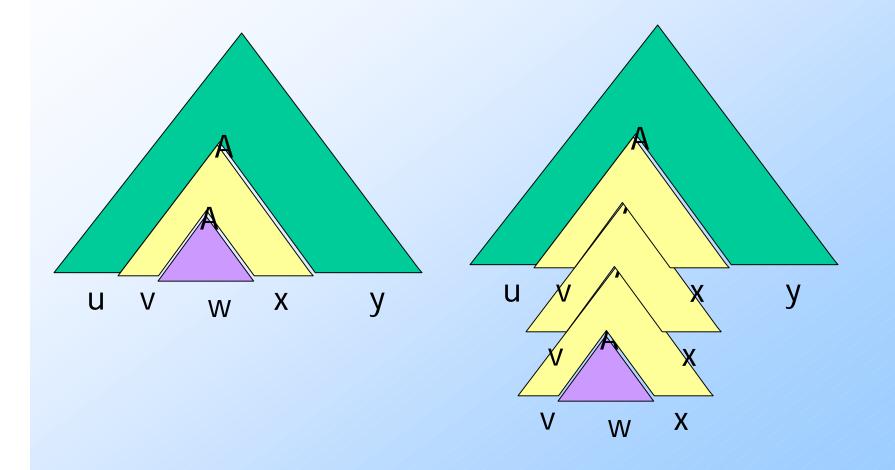


Pump Zero Times

9



Pump Thrice Etc., Etc.



11

Using the Pumping Lemma

• $\{0^{i}10^{i} \mid i \ge 1\}$ is a CFL.

We can match one pair of counts.

- But $L = \{0^{i}10^{i}10^{i} | i \ge 1\}$ is not.
 - We can't match two pairs, or three counts as a group.

Proof using the pumping lemma.

Suppose L were a CFL.

Let n be L's pumping-lemma constant.

Using the Pumping Lemma – (2)

- Consider $z = 0^{n}10^{n}10^{n}$.
- We can write z = uvwxy, where |vwx| < n, and |vx| > 1.
- Case 1: vx has no 0's.
 - Then at least one of them is a 1, and uwy has at most one 1, which no string in L does.

Using the Pumping Lemma – (3)

• Still considering $z = 0^{n}10^{n}10^{n}$.

Case 2: vx has at least one 0.

- vwx is too short (length < n) to extend to all three blocks of 0's in 0ⁿ10ⁿ10ⁿ.
- Thus, uwy has at least one block of n 0's, and at least one block with fewer than n 0's.
- Thus, uwy is not in L.