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Equivalence of PDA, CFG

Conversion of CFG to PDA
Conversion of PDA to CFG



2

Overview

When we talked about closure 
properties of regular languages, it was 
useful to be able to jump between RE 
and DFA representations.
Similarly, CFG’s and PDA’s are both 

useful to deal with properties of the 
CFL’s.
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Overview – (2)

Also, PDA’s, being “algorithmic,” are 
often easier to use when arguing that a 
language is a CFL.
Example: It is easy to see how a PDA 

can recognize balanced parentheses; 
not so easy as a grammar.
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Converting a CFG to a PDA

Let L = L(G).
Construct PDA P such that N(P) = L.
P has:
 One state q.
 Input symbols = terminals of G.
 Stack symbols = all symbols of G.
 Start symbol = start symbol of G.
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Intuition About P

At each step, P represents some left-
sentential form (step of a leftmost 
derivation).
If the stack of P is , and P has so far 

consumed x from its input, then P 
represents left-sentential form x.
At empty stack, the input consumed is 

a string in L(G).
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Transition Function of P

1. δ(q, a, a) = (q, ε). (Type 1 rules)
 This step does not change the LSF 

represented, but “moves” responsibility for a
from the stack to the consumed input.

2. If A ->  is a production of G, then 
δ(q, ε, A) contains (q, ). (Type 2 rules)
 Guess a production for A, and represent the 

next LSF in the derivation.
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Proof That L(P) = L(G)

We need to show that (q, wx, S) ⊦*  
(q, x, ) for any x if and only if            
S =>*lm w.
Part 1: “only if” is an induction on the 

number of steps made by P.
Basis: 0 steps.
 Then  = S, w = ε, and S =>*lm S is 

surely true.
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Induction for Part 1

Consider n moves of P: (q, wx, S) ⊦*  
(q, x, ) and assume the IH for 
sequences of n-1 moves.
There are two cases, depending on 

whether the last move uses a Type 1 or 
Type 2 rule.
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Use of a Type 1 Rule

The move sequence must be of the form 
(q, yax, S) ⊦* (q, ax, a) ⊦ (q, x, ), 
where ya = w.
By the IH applied to the first n-1 steps,  

S =>*lm ya.
But ya = w, so S =>*lm w.
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Use of a Type 2 Rule

The move sequence must be of the form 
(q, wx, S) ⊦* (q, x, A) ⊦ (q, x, ), 
where A ->  is a production and  = .
By the IH applied to the first n-1 steps,  

S =>*lm wA.
Thus, S =>*lm w = w.
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Proof of Part 2 (“if”)

We also must prove that if S =>*lm w, 
then (q, wx, S) ⊦* (q, x, ) for any x.

Induction on number of steps in the 
leftmost derivation.
Ideas are similar; omitted.
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Proof – Completion

We now have (q, wx, S) ⊦* (q, x, ) for 
any x if and only if  S =>*lm w.
In particular, let x =  = ε.
Then (q, w, S) ⊦* (q, ε, ε) if and only if 

S =>*lm w.
That is, w is in N(P) if and only if w is 

in L(G).
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From a PDA to a CFG

Now, assume L = N(P).
We’ll construct a CFG G such that L = L(G).
Intuition: G will have variables [pXq] 

generating exactly the inputs that cause P to 
have the net effect of popping stack symbol 
X while going from state p to state q.
 P never gets below this X while doing so.
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Variables of G

G’s variables are of the form [pXq].
This variable generates all and only the 

strings w such that                           
(p, w, X) ⊦*(q, ε, ε).

Also a start symbol S we’ll talk about 
later.
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Productions of G

Each production for [pXq] comes from a 
move of P in state p with stack symbol X.
Simplest case: δ(p, a, X) contains (q, ε).
 Note a can be an input symbol or ε.

Then the production is [pXq] -> a.
Here, [pXq] generates a, because reading 

a is one way to pop X and go from p to q.
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Productions of G – (2)

Next simplest case: δ(p, a, X) contains 
(r, Y) for some state r and symbol Y.
G has production [pXq] -> a[rYq].
We can erase X and go from p to q by 

reading a (entering state r and replacing 
the X by Y) and then reading some w that 
gets P from r to q while erasing the Y.
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Picture of the Action
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Productions of G – (3)

Third simplest case: δ(p, a, X) contains 
(r, YZ) for some state r and symbols Y 
and Z.
Now, P has replaced X by YZ.
To have the net effect of erasing X, P 

must erase Y, going from state r to 
some state s, and then erase Z, going 
from s to q.
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Picture of the Action
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Third-Simplest Case – Concluded

Since we do not know state s, we must 
generate a family of productions:

[pXq] -> a[rYs][sZq]
for all states s.
[pXq] =>* auv whenever [rYs] =>* u 

and [sZq] =>* v.
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Productions of G: General Case

Suppose δ(p, a, X) contains (r, Y1,…Yk) 
for some state r and k > 3.
Generate family of productions

[pXq] ->
a[rY1s1][s1Y2s2]…[sk-2Yk-1sk-1][sk-1Ykq]
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Completion of the Construction

We can prove that (q0, w, Z0)⊦*(p, ε, ε) 
if and only if [q0Z0p] =>* w.
 Proof is two easy inductions.

But state p can be anything.
Thus, add to G another variable S, the 

start symbol, and add productions               
S -> [q0Z0p] for each state p.


