
1

Context-Free Grammars

Formalism
Derivations

Backus-Naur Form
Left- and Rightmost Derivations

2

Informal Comments

A context-free grammar is a notation
for describing languages.
It is more powerful than finite

automata or RE’s, but still cannot define
all possible languages.
Useful for nested structures, e.g.,

parentheses in programming languages.

3

Informal Comments – (2)

Basic idea is to use “variables” to stand
for sets of strings (i.e., languages).
These variables are defined recursively,

in terms of one another.
Recursive rules (“productions”) involve

only concatenation.
Alternative rules for a variable allow

union.

4

Example: CFG for { 0n1n | n > 1}

Productions:
S -> 01
S -> 0S1

Basis: 01 is in the language.
Induction: if w is in the language, then

so is 0w1.

5

CFG Formalism

Terminals = symbols of the alphabet
of the language being defined.
Variables = nonterminals = a finite

set of other symbols, each of which
represents a language.
Start symbol = the variable whose

language is the one being defined.

6

Productions

A production has the form variable (head)
-> string of variables and terminals (body).
Convention:
 A, B, C,… and also S are variables.
 a, b, c,… are terminals.
…, X, Y, Z are either terminals or variables.
…, w, x, y, z are strings of terminals only.
 , , ,… are strings of terminals and/or

variables.

7

Example: Formal CFG

Here is a formal CFG for { 0n1n | n > 1}.
Terminals = {0, 1}.
Variables = {S}.
Start symbol = S.
Productions =

S -> 01
S -> 0S1

8

Derivations – Intuition

We derive strings in the language of a
CFG by starting with the start symbol,
and repeatedly replacing some variable
A by the body of one of its productions.
 That is, the “productions for A” are those

that have head A.

9

Derivations – Formalism

We say A => if A -> is a
production.
Example: S -> 01; S -> 0S1.
S => 0S1 => 00S11 => 000111.

10

Iterated Derivation

=>* means “zero or more derivation
steps.”
Basis: =>* for any string .
Induction: if =>* and => , then
 =>* .

11

Example: Iterated Derivation

S -> 01; S -> 0S1.
S => 0S1 => 00S11 => 000111.
Thus S =>* S; S =>* 0S1;

S =>* 00S11; S =>* 000111.

12

Sentential Forms

Any string of variables and/or terminals
derived from the start symbol is called a
sentential form.
Formally, is a sentential form iff

S =>* .

13

Language of a Grammar

If G is a CFG, then L(G), the language
of G, is {w | S =>* w}.
Example: G has productions S -> ε and

S -> 0S1.
L(G) = {0n1n | n > 0}.

14

Context-Free Languages

A language that is defined by some
CFG is called a context-free language.
There are CFL’s that are not regular

languages, such as the example just
given.
But not all languages are CFL’s.
Intuitively: CFL’s can count two things,

not three.

15

BNF Notation

Grammars for programming languages
are often written in BNF (Backus-Naur
Form).
Variables are words in <…>; Example:

<statement>.
Terminals are often multicharacter

strings indicated by boldface or
underline; Example: while or WHILE.

16

BNF Notation – (2)

Symbol ::= is often used for ->.
Symbol | is used for “or.”
 A shorthand for a list of productions with

the same left side.

Example: S -> 0S1 | 01 is shorthand
for S -> 0S1 and S -> 01.

17

BNF Notation – Kleene Closure

Symbol … is used for “one or more.”
Example: <digit> ::= 0|1|2|3|4|5|6|7|8|9

<unsigned integer> ::= <digit>…
Translation: Replace … with a new

variable A and productions A -> A | .

18

Example: Kleene Closure

Grammar for unsigned integers can be
replaced by:

U -> UD | D
D -> 0|1|2|3|4|5|6|7|8|9

19

BNF Notation: Optional Elements

Surround one or more symbols by […]
to make them optional.
Example: <statement> ::= if

<condition> then <statement> [; else
<statement>]
Translation: replace [] by a new

variable A with productions A -> | ε.

20

Example: Optional Elements

Grammar for if-then-else can be
replaced by:

S -> iCtSA
A -> ;eS | ε

21

BNF Notation – Grouping

Use {…} to surround a sequence of
symbols that need to be treated as a
unit.
 Typically, they are followed by a … for

“one or more.”

Example: <statement list> ::=
<statement> [{;<statement>}…]

22

Translation: Grouping

Create a new variable A for {}.
One production for A: A -> .
Use A in place of {}.

23

Example: Grouping

L -> S [{;S}…]
Replace by L -> S [A…] A -> ;S
 A stands for {;S}.

Then by L -> SB B -> A… | ε A -> ;S
 B stands for [A…] (zero or more A’s).

Finally by L -> SB B -> C | ε
C -> AC | A A -> ;S
 C stands for A… .

24

Leftmost and Rightmost
Derivations

Derivations allow us to replace any of
the variables in a string.
 Leads to many different derivations of the

same string.

By forcing the leftmost variable (or
alternatively, the rightmost variable) to
be replaced, we avoid these
“distinctions without a difference.”

25

Leftmost Derivations

Say wA =>lm w if w is a string of
terminals only and A -> is a
production.
Also, =>*lm if becomes by a

sequence of 0 or more =>lm steps.

26

Example: Leftmost Derivations

Balanced-parentheses grammmar:
S -> SS | (S) | ()

 S =>lm SS =>lm (S)S =>lm (())S =>lm
(())()
Thus, S =>*lm (())()
S => SS => S() => (S)() => (())() is a

derivation, but not a leftmost derivation.

27

Rightmost Derivations

Say Aw =>rm w if w is a string of
terminals only and A -> is a
production.
Also, =>*rm if becomes by a

sequence of 0 or more =>rm steps.

28

Example: Rightmost Derivations

Balanced-parentheses grammmar:
S -> SS | (S) | ()

 S =>rm SS =>rm S() =>rm (S)() =>rm
(())()
Thus, S =>*rm (())()
S => SS => SSS => S()S => ()()S =>

()()() is neither a rightmost nor a
leftmost derivation.

