Closure Properties of Regular Languages

Union, Intersection, Difference, Concatenation, Kleene Closure, Reversal, Homomorphism, Inverse Homomorphism

Closure Under Union

- ◆If L and M are regular languages, so is L ∪ M.
- Proof: Let L and M be the languages of regular expressions R and S, respectively.
- ♦ Then R+S is a regular expression whose language is $L \cup M$.

Closure Under Concatenation and Kleene Closure

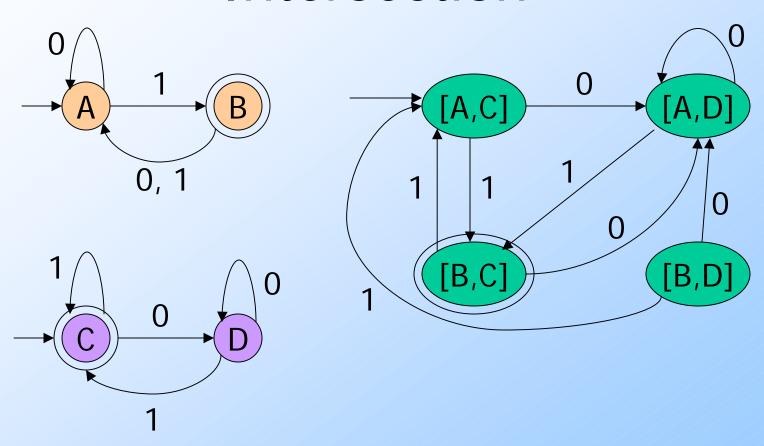
◆Same idea:

- RS is a regular expression whose language is LM.
- R* is a regular expression whose language is L*.

Closure Under Intersection

- ◆If L and M are regular languages, then so is L ∩ M.
- Proof: Let A and B be DFA's whose languages are L and M, respectively.
- Construct C, the product automaton of A and B.
- Make the final states of C be the pairs consisting of final states of both A and B.

Example: Product DFA for Intersection



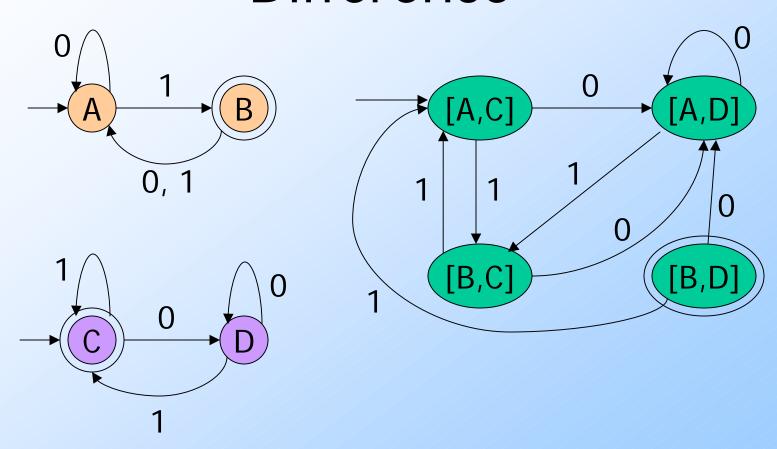
Example: Use of Closure Property

- We proved $L_1 = \{0^n1^n \mid n \ge 0\}$ is not a regular language.
- L₂ = the set of strings with an equal number of 0's and 1's isn't either, but that fact is trickier to prove.
- ◆Regular languages are closed under ○.
- ◆ If L₂ were regular, then L₂ \cap L($\mathbf{0}^*\mathbf{1}^*$) = L₁ would be, but it isn't.

Closure Under Difference

- ♦ If L and M are regular languages, then so is L M = strings in L but not M.
- Proof: Let A and B be DFA's whose languages are L and M, respectively.
- Construct C, the product automaton of A and B.
- ◆Final states of C are the pairs whose A-state is final but whose B-state is not.

Example: Product DFA for Difference



Closure Under Complementation

- The *complement* of a language L (with respect to an alphabet Σ such that Σ^* contains L) is Σ^* L.
- Since Σ* is surely regular, the complement of a regular language is always regular.

Closure Under Reversal

- Recall example of a DFA that accepted the binary strings that, as integers were divisible by 23.
- We said that the language of binary strings whose reversal was divisible by 23 was also regular, but the DFA construction was tricky.
- Here's the "tricky" construction.

Closure Under Reversal – (2)

- Given language L, L^R is the set of strings whose reversal is in L.
- ightharpoonup Example: L = {0, 01, 100}; L^R = {0, 10, 001}.
- ◆Proof: Let E be a regular expression for L. We show how to reverse E, to provide a regular expression E^R for L^R.

Reversal of a Regular Expression

- ◆Basis: If E is a symbol a, ϵ , or \emptyset , then $E^R = E$.
- ◆Induction: If E is
 - F+G, then $E^R = F^R + G^R$.
 - ◆ FG, then E^R = G^RF^R
 - F*, then E^R = (F^R)*.

Example: Reversal of a RE

- Let $E = 01^* + 10^*$.
- \bullet ER = (01* + 10*)R = (01*)R + (10*)R
- $\bullet = (1^*)^R 0^R + (0^*)^R 1^R$
- \bullet = $(1^{R})*0 + (0^{R})*1$
- \Rightarrow = 1*0 + 0*1.

Homomorphisms

- A homomorphism on an alphabet is a function that gives a string for each symbol in that alphabet.
- \bullet Example: h(0) = ab; h(1) = ϵ .
- Extend to strings by $h(a_1...a_n) = h(a_1)...h(a_n)$.
- ightharpoonup Example: h(01010) = ababab.

Closure Under Homomorphism

- ◆ If L is a regular language, and h is a homomorphism on its alphabet, then h(L) = {h(w) | w is in L} is also a regular language.
- Proof: Let E be a regular expression for L.
- Apply h to each symbol in E.
- Language of resulting RE is h(L).

Example: Closure under Homomorphism

- \bullet Let h(0) = ab; h(1) = ϵ .
- Let L be the language of regular expression 01* + 10*.
- Then h(L) is the language of regular expression $abe^* + \epsilon(ab)^*$.

Note: use parentheses to enforce the proper grouping.

Example – Continued

- \bullet ab ϵ * + ϵ (ab)* can be simplified.
- $\bullet \epsilon^* = \epsilon$, so $ab\epsilon^* = ab\epsilon$.
- $\bullet \epsilon$ is the identity under concatenation.
 - That is, $\epsilon E = E \epsilon = E$ for any RE E.
- Thus, $ab \in + \epsilon(ab)^* = ab + (ab)^*$.
- Finally, L(ab) is contained in L((ab)*), so a RE for h(L) is (ab)*.

Inverse Homomorphisms

- Let h be a homomorphism and L a language whose alphabet is the output language of h.
- $h^{-1}(L) = \{w \mid h(w) \text{ is in } L\}.$

Example: Inverse Homomorphism

- \bullet Let h(0) = ab; h(1) = ϵ .
- \bullet Let L = {abab, baba}.
- $h^{-1}(L)$ = the language with two 0's and any number of 1's = L(1*01*01*).

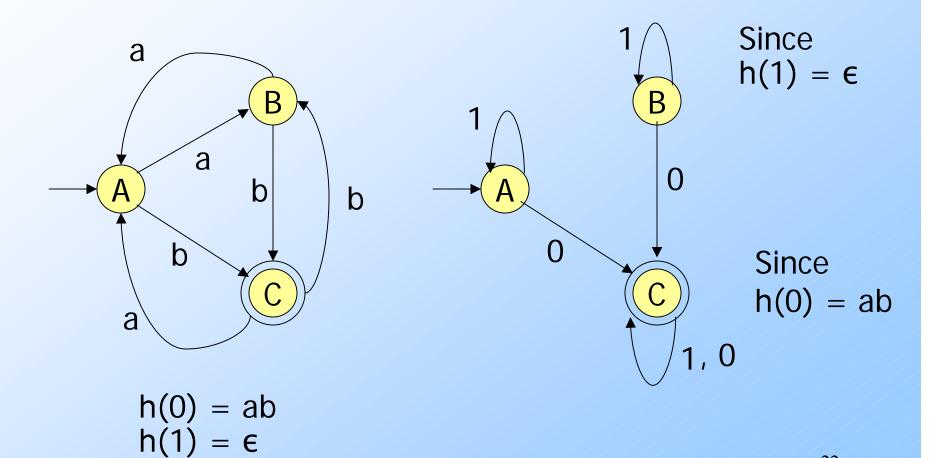
Closure Proof for Inverse Homomorphism

- Start with a DFA A for L.
- ◆Construct a DFA B for h⁻¹(L) with:
 - The same set of states.
 - The same start state.
 - The same final states.
 - Input alphabet = the symbols to which homomorphism h applies.

Proof - (2)

- ◆The transitions for B are computed by applying h to an input symbol a and seeing where A would go on sequence of input symbols h(a).
- Formally, $\delta_B(q, a) = \delta_A(q, h(a))$.

Example: Inverse Homomorphism Construction



Proof – Inverse Homomorphism

- An induction on |w| (omitted) shows that $\delta_B(q_0, w) = \delta_A(q_0, h(w))$.
- Thus, B accepts w if and only if A accepts h(w).