
1

Applications of Regular 
Expressions

Unix RE’s
Text Processing
Lexical Analysis



2

Some Applications

RE’s appear in many systems, often 
private software that needs a simple 
language to describe sequences of 
events.
We’ll use Junglee as an example, then 

talk about text processing and lexical 
analysis.



3

Junglee

Started in the mid-90’s by three of my 
students, Ashish Gupta, Anand 
Rajaraman, and Venky Harinarayan.
Goal was to integrate information from 

Web pages.
Bought by Amazon when Yahoo! hired 

them to build a comparison shopper for 
books.



4

Integrating Want Ads

Junglee’s first contract was to integrate 
on-line want ads into a queryable table.
Each company organized its employment 

pages differently.
Worse: the organization typically changed 

weekly.



5

Junglee’s Solution

They developed a regular-expression 
language for navigating within a page 
and among pages.
Input symbols were:
 Letters, for forming words like “salary”.
 HTML tags, for following structure of page.
 Links, to jump between pages.



6

Junglee’s Solution – (2)

Engineers could then write RE’s to 
describe how to find key information at 
a Web site.
 E.g., position title, salary, requirements,…

Because they had a little language, 
they could incorporate new sites 
quickly, and they could modify their 
strategy when the site changed.



7

RE-Based Software Architecture

Junglee used a common form of 
architecture:
 Use RE’s plus actions (arbitrary code) as 

your input language.
 Compile into a DFA or simulated NFA.
 Each accepting state is associated with an 

action, which is executed when that state 
is entered.



8

UNIX Regular Expressions

UNIX, from the beginning, used regular 
expressions in many places, including 
the “grep” command.
 Grep = “Global (search for a) Regular 

Expression and Print.”

Most UNIX commands use an extended 
RE notation that still defines only 
regular languages.



9

UNIX RE Notation

[a1a2…an] is shorthand for a1+a2+…+an.
Ranges indicated by first-dash-last and 

brackets.
 Order is ASCII.
 Examples: [a-z] = “any lower-case letter,” 

[a-zA-Z] = “any letter.”

Dot = “any character.”



10

UNIX RE Notation – (2)

| is used for union instead of +.
But + has a meaning: “one or more of.”
 E+ = EE*.
 Example: [a-z]+ = “one or more lower-

case letters.
? = “zero or one of.”
 E? = E + ε.
 Example: [ab]? = “an optional a or b.”



11

Example: Text Processing

Remember our DFA for recognizing 
strings that end in “ing”?
It was rather tricky.
But the RE for such strings is easy: 

.*ing where the dot is the UNIX “any”.
Even an NFA is easy (next slide).



12

NFA for “Ends in ing ”

Start

any

i n g



13

Lexical Analysis

The first thing a compiler does is break 
a program into tokens = substrings 
that together represent a unit.
 Examples: identifiers, reserved words like 

“if,” meaningful single characters like “;” or 
“+”, multicharacter operators like “<=”.



14

Lexical Analysis – (2)

Using a tool like Lex or Flex, one can 
write a regular expression for each 
different kind of token.
Example: in UNIX notation, identifiers 

are something like [A-Za-z][A-Za-z0-9]*.
Each RE has an associated action.
 Example: return a code for the token found.



15

Tricks for Combining Tokens

 There are some ambiguities that need 
to be resolved as we convert RE’s to a 
DFA.

 Examples:
1. “if” looks like an identifier, but it is a 

reserved word.
2. < might be a comparison operator, but if 

followed by =, then the token is <=.



16

Tricks – (2)

Convert the RE for each token to an 
ε–NFA.
 Each has its own final state.

Combine these all by introducing a new 
start state with ε-transitions to the start 
states of each ε–NFA.

Then convert to a DFA.



17

Tricks – (3)

If a DFA state has several final states 
among its members, give them priority.
Example: Give all reserved words 

priority over identifiers, so if the DFA 
arrives at a state that contains final 
states for the “if” ε–NFA as well as for 
the identifier ε–NFA, if declares “if”, not 
identifier.



18

Tricks – (4)

It’s a bit more complicated, because 
the DFA has to have an additional 
power.
It must be able to read an input symbol 

and then, when it accepts, put that 
symbol back on the input to be read 
later.



19

Example: Put-Back

Suppose “<” is the first input symbol.
Read the next input symbol.
 If it is “=”, accept and declare the token is 

<=.
 If it is anything else, put it back and 

declare the token is <.



20

Example: Put-Back – (2)

Suppose “if” has been read from the 
input.
Read the next input symbol.
 If it is a letter or digit, continue processing.

• You did not have reserved word “if”; you are 
working on an identifier.

 Otherwise, put it back and declare the 
token is “if”.


