
1

Applications of Regular 
Expressions

Unix RE’s
Text Processing
Lexical Analysis



2

Some Applications

RE’s appear in many systems, often 
private software that needs a simple 
language to describe sequences of 
events.
We’ll use Junglee as an example, then 

talk about text processing and lexical 
analysis.



3

Junglee

Started in the mid-90’s by three of my 
students, Ashish Gupta, Anand 
Rajaraman, and Venky Harinarayan.
Goal was to integrate information from 

Web pages.
Bought by Amazon when Yahoo! hired 

them to build a comparison shopper for 
books.



4

Integrating Want Ads

Junglee’s first contract was to integrate 
on-line want ads into a queryable table.
Each company organized its employment 

pages differently.
Worse: the organization typically changed 

weekly.



5

Junglee’s Solution

They developed a regular-expression 
language for navigating within a page 
and among pages.
Input symbols were:
 Letters, for forming words like “salary”.
 HTML tags, for following structure of page.
 Links, to jump between pages.



6

Junglee’s Solution – (2)

Engineers could then write RE’s to 
describe how to find key information at 
a Web site.
 E.g., position title, salary, requirements,…

Because they had a little language, 
they could incorporate new sites 
quickly, and they could modify their 
strategy when the site changed.



7

RE-Based Software Architecture

Junglee used a common form of 
architecture:
 Use RE’s plus actions (arbitrary code) as 

your input language.
 Compile into a DFA or simulated NFA.
 Each accepting state is associated with an 

action, which is executed when that state 
is entered.



8

UNIX Regular Expressions

UNIX, from the beginning, used regular 
expressions in many places, including 
the “grep” command.
 Grep = “Global (search for a) Regular 

Expression and Print.”

Most UNIX commands use an extended 
RE notation that still defines only 
regular languages.



9

UNIX RE Notation

[a1a2…an] is shorthand for a1+a2+…+an.
Ranges indicated by first-dash-last and 

brackets.
 Order is ASCII.
 Examples: [a-z] = “any lower-case letter,” 

[a-zA-Z] = “any letter.”

Dot = “any character.”



10

UNIX RE Notation – (2)

| is used for union instead of +.
But + has a meaning: “one or more of.”
 E+ = EE*.
 Example: [a-z]+ = “one or more lower-

case letters.
? = “zero or one of.”
 E? = E + ε.
 Example: [ab]? = “an optional a or b.”



11

Example: Text Processing

Remember our DFA for recognizing 
strings that end in “ing”?
It was rather tricky.
But the RE for such strings is easy: 

.*ing where the dot is the UNIX “any”.
Even an NFA is easy (next slide).



12

NFA for “Ends in ing ”

Start

any

i n g



13

Lexical Analysis

The first thing a compiler does is break 
a program into tokens = substrings 
that together represent a unit.
 Examples: identifiers, reserved words like 

“if,” meaningful single characters like “;” or 
“+”, multicharacter operators like “<=”.



14

Lexical Analysis – (2)

Using a tool like Lex or Flex, one can 
write a regular expression for each 
different kind of token.
Example: in UNIX notation, identifiers 

are something like [A-Za-z][A-Za-z0-9]*.
Each RE has an associated action.
 Example: return a code for the token found.



15

Tricks for Combining Tokens

 There are some ambiguities that need 
to be resolved as we convert RE’s to a 
DFA.

 Examples:
1. “if” looks like an identifier, but it is a 

reserved word.
2. < might be a comparison operator, but if 

followed by =, then the token is <=.



16

Tricks – (2)

Convert the RE for each token to an 
ε–NFA.
 Each has its own final state.

Combine these all by introducing a new 
start state with ε-transitions to the start 
states of each ε–NFA.

Then convert to a DFA.



17

Tricks – (3)

If a DFA state has several final states 
among its members, give them priority.
Example: Give all reserved words 

priority over identifiers, so if the DFA 
arrives at a state that contains final 
states for the “if” ε–NFA as well as for 
the identifier ε–NFA, if declares “if”, not 
identifier.



18

Tricks – (4)

It’s a bit more complicated, because 
the DFA has to have an additional 
power.
It must be able to read an input symbol 

and then, when it accepts, put that 
symbol back on the input to be read 
later.



19

Example: Put-Back

Suppose “<” is the first input symbol.
Read the next input symbol.
 If it is “=”, accept and declare the token is 

<=.
 If it is anything else, put it back and 

declare the token is <.



20

Example: Put-Back – (2)

Suppose “if” has been read from the 
input.
Read the next input symbol.
 If it is a letter or digit, continue processing.

• You did not have reserved word “if”; you are 
working on an identifier.

 Otherwise, put it back and declare the 
token is “if”.


