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Regular Expressions

Definitions
Equivalence to Finite Automata
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RE’s: Introduction

Regular expressions describe 
languages by an algebra.
They describe exactly the regular 

languages.
If E is a regular expression, then L(E) is 

the language it defines.
We’ll describe RE’s and their languages 

recursively.
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Operations on Languages

RE’s use three operations: union, 
concatenation, and Kleene star.
The union of languages is the usual 

thing, since languages are sets.
Example: {01,111,10}{00, 01} = 

{01,111,10,00}.
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Concatenation

The concatenation of languages L and 
M is denoted LM.
It contains every string wx such that w is 

in L and x is in M.
Example: {01,111,10}{00, 01} =    

{0100, 0101, 11100, 11101, 1000, 
1001}.
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Kleene Star

If L is a language, then L*, the Kleene 
star or just “star,” is the set of strings 
formed by concatenating zero or more 
strings from L, in any order.
L* = {ε}  L  LL  LLL  …
Example: {0,10}* = {ε, 0, 10, 00, 010, 

100, 1010,…}
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RE’s: Definition

Basis 1: If a is any symbol, then a is a 
RE, and L(a) = {a}.
 Note: {a} is the language containing one 

string, and that string is of length 1.
Basis 2: ε is a RE, and L(ε) = {ε}.
Basis 3: ∅ is a RE, and L(∅) = ∅.
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RE’s: Definition – (2)

Induction 1: If E1 and E2 are regular 
expressions, then E1+E2 is a regular 
expression, and L(E1+E2) = L(E1)L(E2).
Induction 2: If E1 and E2 are regular 

expressions, then E1E2 is a regular 
expression, and L(E1E2) = L(E1)L(E2).
Induction 3: If E is a RE, then E* is a RE, 

and L(E*) = (L(E))*.
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Precedence of Operators

Parentheses may be used wherever 
needed to influence the grouping of 
operators.
Order of precedence is * (highest), 

then concatenation, then + (lowest).
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Examples: RE’s

L(01) = {01}.
L(01+0) = {01, 0}.
L(0(1+0)) = {01, 00}.
 Note order of precedence of operators.

L(0*) = {ε, 0, 00, 000,… }.
L((0+10)*(ε+1)) = all strings of 0’s 

and 1’s without two consecutive 1’s.
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Equivalence of RE’s and Finite 
Automata

We need to show that for every RE, 
there is a finite automaton that accepts 
the same language.
 Pick the most powerful automaton type: the 
ε-NFA.

And we need to show that for every 
finite automaton, there is a RE defining 
its language.
 Pick the most restrictive type: the DFA.
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Converting a RE to an ε-NFA

Proof is an induction on the number of 
operators (+, concatenation, *) in the 
RE.
We always construct an automaton of a 

special form (next slide).
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Form of ε-NFA’s Constructed

No arcs from outside,
no arcs leavingStart state:

Only state
with external
predecessors

“Final” state:
Only state
with external
successors
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RE to ε-NFA: Basis

Symbol a:

ε:

∅:

a

ε
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RE to ε-NFA: Induction 1 – Union

For E1

For E2

For E1  E2

ε

ε ε

ε
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RE to ε-NFA: Induction 2 –
Concatenation

For E1 For E2

For E1E2

ε
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RE to ε-NFA: Induction 3 – Closure

For E

For E*

ε

ε

εε
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DFA-to-RE

A strange sort of induction.
States of the DFA are named 1,2,…,n.
Induction is on k, the maximum state 

number we are allowed to traverse 
along a path.
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k-Paths

A k-path is a path through the graph of 
the DFA that goes though no state 
numbered higher than k.
Endpoints are not restricted; they can 

be any state.
n-paths are unrestricted.
RE is the union of RE’s for  the n-paths 

from the start state to each final state.
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Example: k-Paths

1

3

2
0

00

1

1 1

0-paths from 2 to 3:
RE for labels = 0.

1-paths from 2 to 3:
RE for labels = 0+11.

2-paths from 2 to 3:
RE for labels =
(10)*0+1(01)*1

3-paths from 2 to 3:
RE for labels = ??
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DFA-to-RE

Basis: k = 0; only arcs or a node by 
itself.
Induction: construct RE’s for paths 

allowed to pass through state k from 
paths allowed only up to k-1.
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k-Path Induction

Let Rij
k be the regular expression for 

the set of labels of k-paths from state i 
to state j.
Basis: k=0. Rij

0 = sum of labels of arc 
from i to j.
 ∅ if no such arc.
 But add ε if i=j.
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Example: Basis

R12
0 = 0.

R11
0 = ∅ + ε = ε.

1

3

2
0

00

1

1 1

Notice algebraic law:
∅ plus anything =
that thing.
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k-Path Inductive Case

 A k-path from i to j either:
1. Never goes through state k, or
2. Goes through k one or more times.

Rij
k = Rij

k-1 + Rik
k-1(Rkk

k-1)* Rkj
k-1.

Doesn’t go
through k

Goes from
i to k the
first time Zero or

more times
from k to k

Then, from
k to j
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Illustration of Induction

States < k

k

i
j

Paths not going
through k

From k
to j

From k to k
Several times

Path to k



25

Final Step

 The RE with the same language as the 
DFA is the sum (union) of Rij

n, where:
1. n is the number of states; i.e., paths are 

unconstrained.
2. i is the start state.
3. j is one of the final states.
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Example

R23
3 = R23

2 + R23
2(R33

2)*R33
2 = R23

2(R33
2)*

R23
2 = (10)*0+1(01)*1

R33
2 = ε + 0(01)*(1+00) + 1(10)*(0+11)

R23
3 = [(10)*0+1(01)*1] [ε + 

(0(01)*(1+00) + 1(10)*(0+11))]*

1

3

2
0

00

1

1 1

Start
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Summary

Each of the three types of automata 
(DFA, NFA, ε-NFA) we discussed, and 
regular expressions as well, define 
exactly the same set of languages: the 
regular languages.
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Algebraic Laws for RE’s

Union and concatenation behave sort of 
like addition and multiplication.
 + is commutative and associative; 

concatenation is associative.
 Concatenation distributes over +.
 Exception: Concatenation is not 

commutative.
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Identities and Annihilators

∅ is the identity for +.
 R + ∅ = R.

 ε is the identity for concatenation.
 εR = Rε = R.

 ∅ is the annihilator for concatenation.
 ∅R = R∅ = ∅.


