Regular Expressions

Definitions
Equivalence to Finite Automata

RE's: Introduction

&® Regular expressions describe
languages by an algebra.

@ They describe exactly the regular
languages.

@ If E is a regular expression, then L(E) is
the language it defines.

& \We'll describe RE’s and their languages
recursively.

Operations on Languages

® RE’s use three operations: union,
concatenation, and Kleene star.

€ The union of languages is the usual
thing, since languages are sets.

¢ + {01,111,10}{00, 01} =
£01,111,10,00}.

Concatenation

& The concatenation of languages L and
M is denoted LM.

@ It contains every string wx such that w is
In L and x is in M.

& © {01,111,10}{00, 01} =
£0100, 0101, 11100, 11101, 1000,
1001}.

Kleene Star

@ If L is a language, then L*, the Kleene
star or just “star,” Is the set of strings
formed by concatenating zero or more
strings from L, in any order.

®L*={e}ulLuUlLLULLLuU ..
. - {0,10}* = {e, 0, 10, 00, 010,
100, 1010,...}

RE's: Definition

®Basis 1: If a is any symbol, then a is a
RE, and L(a) = {a}.
+ Note: {a} Is the language containing one
string, and that string Is of length 1.

®Basis 2: € is a RE, and L(e) = {e}.
®Basis 3: g isaRE, and L(v) = @.

RE’s: Definition — (2)

@ Induction 1: If E; and E, are regular
expressions, then E,+E, Is a regular
expression, and L(E,+E,) = L(E,)UL(E,).

@ Induction 2: If E; and E, are regular
expressions, then E,E, is a regular
expression, and L(E,E,) = L(E,)L(E,).

@ Induction 3: If E is a RE, then E* is a RE,
and L(E*) = (L(E))*.

Precedence of Operators

& Parentheses may be used wherever
needed to influence the grouping of
operators.

@ Order of precedence is * (highest),
then concatenation, then + (lowest).

4
\ 4
4

' RE’s

(01) = {01}.
(01+0) = {01, O}.

|(0(1+0)) = {01, 00}.
* Note order of precedence of operators.

€L(0*) = {€, 0, 00, 000,... }.
®L((0+10)*(e+1)) = all strings of 0’s
and 1's without two consecutive 1’s.

Equivalence of RE’s and Finite
Automata

€ \We need to show that for every RE,
there Is a finite automaton that accepts
the same language.

* Pick the most powerful automaton type: the
e-NFA.
€ And we need to show that for every
finite automaton, there is a RE defining
Its language.
* Pick the most restrictive type: the DFA.

Converting a RE to an e-NFA

@ Proof is an induction on the number of
operators (+, concatenation, *) in the
RE.

€ We always construct an automaton of a
special form (next slide).

11

Form of e-NFA’s Constructed

NO arcs from outside

Start state: no arcs leaving “Final” state:
Only state Only state
with external with external

predecessors SUCCEeSSOrs

12

RE to e-NFA: Basis

¢ Symbol a: () ()
®c: @ : ()
*: () @

13

RE to e-NFA: Induction 1 — Union

For E; U E,

14

RE to e-NFA: Induction 2 —
Concatenation

For E;E,

15

RE to €e-NFA: Induction 3 — Closure

16

DFA-to-RE

® A strange sort of induction.

& States of the DFA are named 1,2....,n.

€ Induction is on k, the maximum state
number we are allowed to traverse
along a path.

17

k-Paths

® A k-path is a path through the graph of
the DFA that goes no state
numbered higher than k.

€ Endpoints are not restricted; they can
be any state.

@ n-paths are unrestricted.

@ RE is the union of RE’s for the n-paths
from the start state to each final state.

18

. k-Paths

0-paths from 2 to 3:
RE for labels = O.

1-paths from 2 to 3:
RE for labels = O+11.

2-paths from 2 to 3:
RE for labels =
(10)*0+1(01)*1

3-paths from 2 to 3:
RE for labels = ?7? 19

DFA-to-RE

@ Basis: k = 0; only arcs or a node by
itself.

€ Induction: construct RE’s for paths
allowed to pass through state k from
paths allowed only up to k-1.

20

k-Path Induction

®Let R;* be the regular expression for
the set of labels of k-paths from state |
to state |J.

®Basis: k=0. R;® = sum of labels of arc
from 1 to j.
« @ If no such arc.
* But add € If I=].

21

- Basis

R, =0 +€e=¢€.
\

Notice algebraic law:

& plus anything =
that thing.

22

k-Path Inductive Case

€ A k-path from i to j either:
1. Never goes through state k, or
2. Goes through k one or more times.

Rijk — Rijk-l + Rikk-l(Rkkk-l)* Rkjk-l_

[\
_Goes ol Then, from
Doesn't go 1 to k the K10 |
through k first time £€r0 Or
more times

from k to k

23

lllustration of Induction

Path to k
Paths not going
through k From Kk to k

Several times
£ /5 :\>\

4
States < k

24

Final Step

€ The RE with the same language as the
DFA Is the sum (union) of R;", where:
1. nis the number of states; I.e., paths are
unconstrained.

2. 11s the start state.
3.] Is one of the final states.

25

® o090

Rp3” = Rpg® + Rpg®(R3%)*Rag® = Rpg?(Rgs®)™
2,:2 = (10)*0+1(01)*1

Ra3° = € + 0(01)*(1+00) + 1(10)*(0+11)
R,5° = [(10)*0+1(01)*1] [€ +
(0(01)*(1+00) + 1(10)*(0+11))]*

26

Summary

@ Each of the three types of automata
(DFA, NFA, e-NFA) we discussed, and
regular expressions as well, define
exactly the same set of languages: the
regular languages.

27

Algebraic Laws for RE’s

€ Union and concatenation behave sort of
like addition and multiplication.

¢ + |S commutative and associative;
concatenation Is associative.

+ Concatenation distributes over +.

¢ Exception: Concatenation Is not
commutative.

28

|dentities and Annihilators

¢ o Is the identity for +.
*R+ g =R.

@ ¢ is the identity for concatenation.
¢+ eR = Re = R.

& o is the annihilator for concatenation.
+ R =Ro = 2.

29

