Nondeterministic Finite Automata

Nondeterminism
Subset Construction
€-Transitions

Nondeterminism

- ◆A nondeterministic finite automaton has the ability to be in several states at once.
- Transitions from a state on an input symbol can be to any set of states.

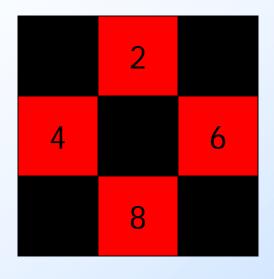
Nondeterminism – (2)

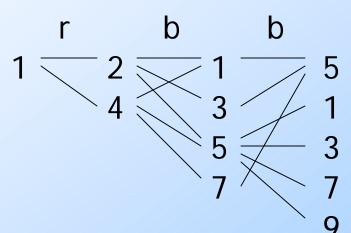
- Start in one start state.
- Accept if any sequence of choices leads to a final state.
- Intuitively: the NFA always "guesses right."

Example: Moves on a Chessboard

- States = squares.
- Inputs = r (move to an adjacent red square) and b (move to an adjacent black square).
- Start state, final state are in opposite corners.

Example: Chessboard – (2)





		r	b
-	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

← Accept, since final state reached

Formal NFA

- A finite set of states, typically Q.
- An input alphabet, typically Σ.
- \bullet A transition function, typically δ .
- \bullet A start state in Q, typically q_0 .
- lack A set of final states $F \subseteq Q$.

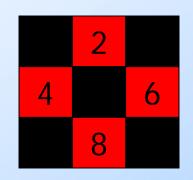
Transition Function of an NFA

- $\bullet \delta(q, a)$ is a set of states.
- Extend to strings as follows:
- ♦ Basis: $\delta(q, \epsilon) = \{q\}$
- •Induction: $\delta(q, wa) = the union over all states p in <math>\delta(q, w)$ of $\delta(p, a)$

Language of an NFA

- igoplus A string w is accepted by an NFA if $\delta(q_0, w)$ contains at least one final state.
- The language of the NFA is the set of strings it accepts.

Example: Language of an NFA



- For our chessboard NFA we saw that rbb is accepted.
- ◆ If the input consists of only b's, the set of accessible states alternates between {5} and {1,3,7,9}, so only even-length, nonempty strings of b's are accepted.
- What about strings with at least one r?

Equivalence of DFA's, NFA's

- ◆A DFA can be turned into an NFA that accepts the same language.
- If $\delta_D(q, a) = p$, let the NFA have $\delta_N(q, a) = \{p\}$.
- ◆Then the NFA is always in a set containing exactly one state – the state the DFA is in after reading the same input.

Equivalence – (2)

- Surprisingly, for any NFA there is a DFA that accepts the same language.
- Proof is the subset construction.
- The number of states of the DFA can be exponential in the number of states of the NFA.
- Thus, NFA's accept exactly the regular languages.

Subset Construction

- Given an NFA with states Q, inputs Σ , transition function δ_N , state state q_0 , and final states F, construct equivalent DFA with:
 - States 2^Q (Set of subsets of Q).
 - Inputs Σ.
 - Start state {q₀}.
 - Final states = all those with a member of F.

Critical Point

- The DFA states have names that are sets of NFA states.
- But as a DFA state, an expression like {p,q} must be understood to be a single symbol, not as a set.
- Analogy: a class of objects whose values are sets of objects of another class.

Subset Construction – (2)

- lacktriangle The transition function δ_D is defined by:
- $\delta_D(\{q_1,...,q_k\}, a)$ is the union over all i = 1,...,k of $\delta_N(q_i, a)$.
- Example: We'll construct the DFA equivalent of our "chessboard" NFA.

		r	d
-	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

→ {1} {2,4} {5} {2,4} {5}		r	b
	{2,4}	{2,4}	{5}

Alert: What we're doing here is the *lazy* form of DFA construction, where we only construct a state if we are forced to.

15

		r	b
-	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

	r	b
→ {1}	{2,4}	{5}
{2,4}	{2,4,6,8}	{1,3,5,7}
{5}		
{2,4,6,8}		
{1,3,5,7}		

		r	b
	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

		r	b
	→ {1}	{2,4}	{5}
	{2,4}	{2,4,6,8}	{1,3,5,7}
	{5 }	{2,4,6,8}	{1,3,7,9}
	{2,4,6,8}		
	{1,3,5,7}		
k	{1,3,7,9}		

		r	b
	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

	r	b
→ {1}	{2,4}	{5}
{2,4}	{2,4,6,8}	{1,3,5,7}
{5}	{2,4,6,8}	{1,3,7,9}
{2,4,6,8}	{2,4,6,8}	{1,3,5,7,9}
{1,3,5,7}		
* {1,3,7,9}		
* {1,3,5,7,9}		
{1,3,5,7,9}		

		r	b
-	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

	r	b
→ {1}	{2,4}	{5}
{2,4}	{2,4,6,8}	{1,3,5,7}
{5 }	{2,4,6,8}	{1,3,7,9}
{2,4,6,8}	{2,4,6,8}	{1,3,5,7,9}
{1,3,5,7}	{2,4,6,8}	{1,3,5,7,9}
* {1,3,7,9}		
* {1,3,5,7,9}		

		r	b
-	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

	r	b
→ {1}	{2,4}	{5}
{2,4}	{2,4,6,8}	{1,3,5,7}
{5}	{2,4,6,8}	{1,3,7,9}
{2,4,6,8}	{2,4,6,8}	{1,3,5,7,9}
{1,3,5,7}	{2,4,6,8}	{1,3,5,7,9}
* {1,3,7,9}	{2,4,6,8}	{5}
* {1,3,5,7,9}		

		r	b
→	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

r	b
{2,4}	{5}
{2,4,6,8}	{1,3,5,7}
{2,4,6,8}	{1,3,7,9}
{2,4,6,8}	{1,3,5,7,9}
{2,4,6,8}	{1,3,5,7,9}
{2,4,6,8}	
{2,4,6,8}	{1,3,5,7,9}
	{2,4} {2,4,6,8} {2,4,6,8} {2,4,6,8} {2,4,6,8} {2,4,6,8}

Proof of Equivalence: Subset Construction

- The proof is almost a pun.
- Show by induction on |w| that $\delta_N(q_0, w) = \delta_D(\{q_0\}, w)$
- ♦ Basis: $W = \epsilon$: $\delta_N(q_0, \epsilon) = \delta_D(\{q_0\}, \epsilon) = \{q_0\}$.

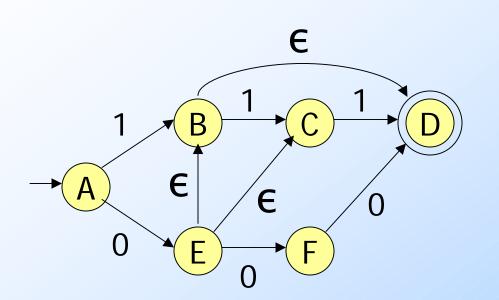
Induction

- Assume IH for strings shorter than w.
- Let w = xa; IH holds for x.
- $\bullet \text{Let } \delta_{N}(q_0, x) = \delta_{D}(\{q_0\}, x) = S.$
- Let T = the union over all states p in S of $\delta_N(p, a)$.
- Then $\delta_N(q_0, w) = \delta_D(\{q_0\}, w) = T$.

NFA's With ϵ -Transitions

- ◆We can allow state-to-state transitions on ∈ input.
- These transitions are done spontaneously, without looking at the input string.
- A convenience at times, but still only regular languages are accepted.

Example: ∈-NFA



		0	1	E	
→	Α	{E}	{B}	Ø	
	В	Ø	{C}	{D}	
	C	Ø	{D}	Ø	
*	D	Ø	Ø	Ø	
	E	{F}	Ø	{B,	C}
	F	{D}	Ø	Ø	

Closure of States

 ◆CL(q) = set of states you can reach from state q following only arcs labeled
 €.

◆Example: CL(A) = {A}; CL(E) = {B, C, D, E}.

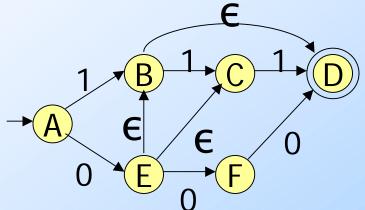
Closure of a set of states = union of the closure of each state.

Extended Delta

- Intuition: δ(q, w) is the set of states you can reach from q following a path labeled w.
- \bullet Basis: $\delta(q, \epsilon) = CL(q)$.
- Induction: $\delta(q, xa)$ is computed by:
 - 1. Start with $\delta(q, x) = S$.
 - 2. Take the union of $CL(\delta(p, a))$ for all p in S.

Example:

Extended Delta

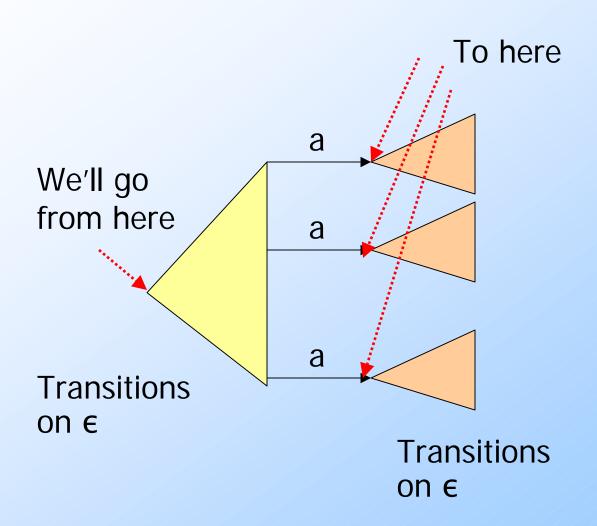


- \bullet $\delta(A, 0) = CL(\{E\}) = \{B, C, D, E\}.$
- \bullet $\delta(A, 01) = CL(\{C, D\}) = \{C, D\}.$
- ♦ Language of an ε-NFA is the set of strings w such that $\delta(q_0, w)$ contains a final state.

Equivalence of NFA, ϵ -NFA

- \bullet Every NFA is an ϵ -NFA.
 - It just has no transitions on ϵ .
- ◆Converse requires us to take an ∈-NFA and construct an NFA that accepts the same language.
- We do so by combining ϵ -transitions with the next transition on a real input.

Picture of ϵ -Transition Removal



Equivalence – (2)

- •Start with an ε-NFA with states Q, inputs Σ , start state q_0 , final states F, and transition function δ_E .
- Construct an "ordinary" NFA with states Q, inputs Σ , start state q_0 , final states F', and transition function δ_N .

Equivalence – (3)

- \bullet Compute $\delta_N(q, a)$ as follows:
 - 1. Let S = CL(q).
 - 2. $\delta_N(q, a)$ is the union over all p in S of $\delta_F(p, a)$.
- ightharpoonup F' =the set of states q such that CL(q) contains a state of F.

Equivalence – (4)

Prove by induction on |w| that

$$CL(\delta_N(q_0, w)) = \hat{\delta}_E(q_0, w).$$

 \bullet Thus, the ϵ -NFA accepts w if and only if the "ordinary" NFA does.

Interesting

closures: CL(B)

 $= \{B,D\}; CL(E)$

 $= \{B,C,D,E\}$

Example: ∈-NFAto-NFA

{B}

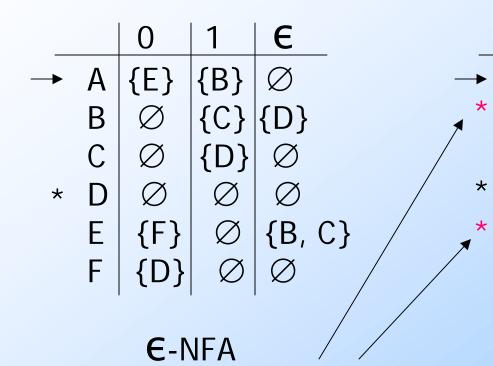
{C}

{D}

{C, D}

{E}

В



Since closures of B and E include final state D.

Doesn't change, since B, C, D have no transitions on 0.

Since closure of E includes B and C; which have transitions on 1 to C and D.

Summary

- ◆DFA's, NFA's, and ∈-NFA's all accept exactly the same set of languages: the regular languages.
- The NFA types are easier to design and may have exponentially fewer states than a DFA.
- But only a DFA can be implemented!