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Deterministic Finite Automata

Alphabets, Strings, and Languages
Transition Graphs and Tables

Some Proof Techniques
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Alphabets

An alphabet is any finite set of 
symbols.
Examples:

ASCII, Unicode,
{0,1} (binary alphabet ),
{a,b,c}, {s,o},
set of signals used by a protocol.
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Strings

A string over an alphabet Σ is a list, each 
element of which is a member of Σ.
 Strings shown with no commas or quotes, 

e.g., abc or 01101.
Σ* = set of all strings over alphabet Σ.

The length of a string is its number of 
positions.
ε stands for the empty string (string of 

length 0).
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Example: Strings

{0,1}* = {ε, 0, 1, 00, 01, 10, 11, 000, 
001, . . . }
Subtlety: 0 as a string, 0 as a symbol 

look the same.
 Context determines the type.
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Languages

A language is a subset of Σ* for some 
alphabet Σ.

Example: The set of strings of 0’s and 
1’s with no two consecutive 1’s.
L = {ε, 0, 1, 00, 01, 10, 000, 001, 010, 

100, 101, 0000, 0001, 0010, 0100, 
0101, 1000, 1001, 1010, . . . }

Hmm… 1 of length 0, 2 of length 1, 3, of length 2, 5 of length
3, 8 of length 4.  I wonder how many of length 5?
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Deterministic Finite Automata

 A formalism for defining languages, 
consisting of:

1. A finite set of states (Q, typically).
2. An input alphabet (Σ, typically).
3. A transition function (δ, typically).

4. A start state (q0, in Q, typically).
5. A set of final states (F ⊆ Q, typically).
 “Final” and “accepting” are synonyms.
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The Transition Function

Takes two arguments: a state and an 
input symbol.
δ(q, a) = the state that the DFA goes 

to when it is in state q and input a is 
received.
Note: always a next state – add a dead 

state if no transition (Example on next 
slide).
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Graph Representation of DFA’s 

Nodes = states.
Arcs represent transition function.
 Arc from state p to state q labeled by all 

those input symbols that have transitions 
from p to q.

Arrow labeled “Start” to the start state.
Final states indicated by double circles.
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Example: Recognizing Strings 
Ending in “ing”

nothing Saw i
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Example: Protocol for Sending 
Data

Ready Sending
data in

ack

timeout

Start
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Example: Strings With No 11

Start

1

0

A CB
1

0 0,1

String so far
has no 11,
does not
end in 1.

String so far
has no 11,
but ends in
a  single 1.

Consecutive
1’s have
been seen.
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Alternative Representation: 
Transition Table

0 1

A A B
B A C
C C C

Rows = states

Columns =
input symbols

Final states
starred

*
*Arrow for

start state

Start

1

0

A CB 1
0 0,1

Each entry is δ
of the row and
column.
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Convention: Strings and Symbols

 … w, x, y, z are strings.
 a, b, c,… are single input symbols.
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Extended Transition Function

We describe the effect of a string of 
inputs on a DFA by extending δ to a 
state and a string.
Intuition: Extended δ is computed for 

state q and inputs a1a2…an by following 
a path in the transition graph, starting 
at q and selecting the arcs with labels 
a1, a2,…, an in turn.
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Inductive Definition of 
Extended δ

Induction on length of string.
Basis: δ(q, ε) = q
Induction: δ(q,wa) = δ(δ(q,w),a)
 Remember: w is a string; a is an input 

symbol, by convention.
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Example: Extended Delta
0 1

A A B
B A C
C C C

δ(B,011) = δ(δ(B,01),1) = δ(δ(δ(B,0),1),1) =

δ(δ(A,1),1) = δ(B,1) = C
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Delta-hat

We don’t distinguish between the given 
delta and the extended delta or delta-
hat.
The reason:
δ(q, a) = δ(δ(q, ε), a) = δ(q, a)˄˄

Extended deltas



19

Language of a DFA

Automata of all kinds define languages.
If A is an automaton, L(A) is its 

language.
For a DFA A, L(A) is the set of strings 

labeling paths from the start state to a 
final state.
Formally: L(A) = the set of strings w 

such that δ(q0, w) is in F.
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Example: String in a Language

Start

1

0

A CB
1

0 0,1

String 101 is in the language of the DFA below.
Start at A.
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Example: String in a Language

Start

1

0

A CB
1

0 0,1

Follow arc labeled 1.

String 101 is in the language of the DFA below.
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Example: String in a Language

Start

1

0

A CB
1

0 0,1

Then arc labeled 0 from current state B.

String 101 is in the language of the DFA below.
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Example: String in a Language

Start

1

0

A CB
1

0 0,1

Finally arc labeled 1 from current state A.  Result
is an accepting state, so 101 is in the language.

String 101 is in the language of the DFA below.
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Example – Concluded

The language of our example DFA is:
{w | w is in {0,1}* and w does not have

two consecutive 1’s}

Read a set former as
“The set of strings w…

Such that… These conditions
about w are true.
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Proofs of Set Equivalence

Often, we need to prove that two 
descriptions of sets are in fact the same 
set.
Here, one set is “the language of this 

DFA,” and the other is “the set of 
strings of 0’s and 1’s with no 
consecutive 1’s.”
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Proofs – (2)

 In general, to prove S = T, we need 
to prove two parts: S ⊆ T and T ⊆ S.  
That is:

1. If w is in S, then w is in T.
2. If w is in T, then w is in S.

 Here, S = the language of our running 
DFA, and T = “no consecutive 1’s.”
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Part 1: S ⊆ T

To prove: if w is accepted by
then w has no consecutive 1’s.
Proof is an induction on length of w.
Important trick: Expand the inductive 

hypothesis to be more detailed than the 
statement you are trying to prove.

Start

1

0

A CB 1
0 0,1
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The Inductive Hypothesis

1. If δ(A, w) = A, then w has no 
consecutive 1’s and does not end in 1.

2. If δ(A, w) = B, then w has no 
consecutive 1’s and ends in a single 1.

 Basis: |w| = 0; i.e., w = ε.
 (1) holds since ε has no 1’s at all.
 (2) holds vacuously, since δ(A, ε) is not B.

“length of”
Important concept:
If the “if” part of “if..then” is false,
the statement is true.
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Inductive Step

Assume (1) and (2) are true for strings 
shorter than w, where |w| is at least 1.
Because w is not empty, we can write 

w = xa, where a is the last symbol of 
w, and x is the string that precedes.
IH is true for x.

Start

1

0

A CB 1
0 0,1
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Inductive Step – (2)

Need to prove (1) and (2) for w = xa.
(1) for w is: If δ(A, w) = A, then w has no 

consecutive 1’s and does not end in 1.
Since δ(A, w) = A, δ(A, x) must be A or B, 

and a must be 0 (look at the DFA).
By the IH, x has no 11’s.
Thus, w has no 11’s and does not end in 1.

Start

1

0

A CB 1
0 0,1
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Inductive Step – (3)

Now, prove (2) for w = xa: If δ(A, w) = 
B, then w has no 11’s and ends in 1.
Since δ(A, w) = B, δ(A, x) must be A, 

and a must be 1 (look at the DFA).
By the IH, x has no 11’s and does not 

end in 1.
Thus, w has no 11’s and ends in 1.

Start

1

0

A CB 1
0 0,1
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Part 2: T ⊆ S

Now, we must prove: if w has no 11’s, 
then w is accepted by

Contrapositive : If w is not accepted by

then w has 11.

Start

1

0

A CB 1
0 0,1

Start

1

0

A CB 1
0 0,1

Key idea: contrapositive
of “if X then Y” is the
equivalent statement
“if not Y then not X.”

X

Y
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Using the Contrapositive

Because there is a unique transition 
from every state on every input symbol, 
each w gets the DFA to exactly one 
state.
The only way w is not accepted is if it 

gets to C. 

Start

1

0

A CB 1
0 0,1
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Using the Contrapositive 
– (2)

The only way to get to C [formally: 
δ(A,w) = C] is if w = x1y, x gets to B, 
and y is the tail of w that follows what 
gets to C for the first time.
If δ(A,x) = B then surely x = z1 for 

some z.
Thus, w = z11y and has 11.

Start

1

0

A CB 1
0 0,1
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Regular Languages

A language L is regular if it is the 
language accepted by some DFA.
 Note: the DFA must accept only the strings 

in L, no others.

Some languages are not regular.
 Intuitively, regular languages “cannot 

count” to arbitrarily high integers.



36

Example: A Nonregular Language

L1 = {0n1n | n ≥ 1}

Note: ai is conventional for i a’s.
 Thus, 04 = 0000, e.g.

Read: “The set of strings consisting of 
n 0’s followed by n 1’s, such that n is at 
least 1.
Thus, L1 = {01, 0011, 000111,…}
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Another Example

L2 = {w | w in {(, )}* and w is balanced }
Balanced parentheses are those 

sequences of parentheses that can 
appear in an arithmetic expression.
E.g.: (), ()(), (()), (()()),…
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But Many Languages are 
Regular

They appear in many contexts and 
have many useful properties.
Example: the strings that represent 

floating point numbers in your favorite 
language is a regular language.
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Example: A Regular Language

L3 = { w | w in {0,1}* and w, viewed as a 
binary integer is divisible by 23}
The DFA:
 23 states, named 0, 1,…,22.
 Correspond to the 23 remainders of an 

integer divided by 23.
 Start and only final state is 0.
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Transitions of the DFA for L3

If string w represents integer i, then 
assume δ(0, w) = i%23.

Then w0 represents integer 2i, so we 
want δ(i%23, 0) = (2i)%23.

Similarly: w1 represents 2i+1, so we 
want δ(i%23, 1) = (2i+1)%23.
Example: δ(15,0) = 30%23 = 7; 
δ(11,1) = 23%23 = 0.
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Another Example

L4 = { w | w in {0,1}* and w, viewed as the 
reverse of a binary integer is divisible by 23}
Example: 01110100 is in L4, because its 

reverse, 00101110 is 46 in binary.
Hard to construct the DFA.
But there is a theorem that says the reverse 

of a regular language is also regular.


