Deterministic Finite Automata

Alphabets, Strings, and Languages
Transition Graphs and Tables
Some Proof Technigques

Alphabets

® An alphabet is any finite set of
symbols.

4 ;
ASCII, Unicode,
{0,1} (binary alphabet),
{a,b,c}, {s,0},

set of signals used by a protocol.

Strings

@ A string over an alphabet 2 is a list, each
element of which i1s a member of 2.

¢ Strings shown with no commas or guotes,
e.g., abc or 01101.

€ >* = set of all strings over alphabet 2.

® The /ength of a string is its number of
positions.

® € stands for the empty string (string of
length 0).

. Strings

¢{0,13* = {¢, 0, 1, 00, 01, 10, 11, 000,
001, ...}

@ Subtlety: 0 as a string, 0 as a symbol
look the same.

+ Context determines the type.

Languages

® A /anguage is a subset of >* for some
alphabet 2.

¢ . The set of strings of 0’'s and
1’s with no two consecutive 1’s.

®L={€0,1, 00, 01, 10, 000, 001, 010,
100, 101, 0000, 0001, 0010, 0100,
0101, 1000, 1001, 1010, ...}

Deterministic Finite Automata

€ A formalism for defining languages,
consisting of:

A finite set of states (Q, typically).

An /nput alphabet (2, typically).

A transition function (0, typically).

A start state (q,, In Q, typically).

A set of final states (F < Q, typically).
€ “Final” and “accepting” are synonyms.

SN

The Transition Function

@ Takes two arguments: a state and an
Input symbol.
€ 5(q, a) = the state that the DFA goes

to when it is in state g and input a IS
received.

¢ . always a next state — add a dead
state 1f no transition (Example on next
slide).

Graph Representation of DFA’s

® Nodes = states.

@ Arcs represent transition function.

* Arc from state p to state labeled by all
those input symbols that have transitions
from p to Q.

@ Arrow labeled “Start” to the start state.
@ Final states indicated by double circles.

. Recognizing Strings
Ending In “ing”

Not /or g

Start

. Protocol for Sending
Data

e i ‘ timeout
o <G

ack

11

. Strings With No 11

Start 0

String so far String so far Consecutive
hasno 11, hasno 11, 1's have

does not but endsin been seen.
end in 1. a single 1.

12

Alternative Representation:
Transition Table

Final states

. Columns =
SRS 0 1 Input symbols
T x A A B
Arrow for * B A C
start state C C / C

Rows = states £ ‘ e
Each entry is o

of the row and >tart
column.

. Strings and Symbols

® ...w, X, Y, z are strings.
® a, b, c,... are single input symbols.

14

Extended Transition Function

€ \We describe the effect of a string of
inputs on a DFA by extending o to a

state and a string.
4 : Extended © is computed for

state q and Inputs a,a,...a, by following
a path in the transition graph, starting
at g and selecting the arcs with labels
a,, a,,..., &, In turn.

15

Inductive Definition of
Extended o

@ Induction on length of string.
®Basis: 0(q, €) = ¢
@ Induction: d(g,wa) = d0(0(q,w),a)

o . W IS a string; a Is an input
symbol, by convention.

16

. Extended Delta

O >
O > > | O
OO |-

5(B,011) = §(5(B,01),1) = &(8(5(B,0),1),1) =
5(5(A,1),1) = 8(B,1) = C

17

Delta-hat

€ \We don't distinguish between the given
delta and the extended delta or delta-
hat.

@ The reason:
05((11 a) —5(5(0| €), a) = o(q, a)

N

Extended deltas

18

Language of a DFA

€ Automata of all kinds define languages.
@ If A is an automaton, L(A) is its
language.

®For a DFA A, L(A) is the set of strings
labeling paths from the start state to a
final state.

¢ : L(A) = the set of strings w
such that o(q,, w) is in F.

19

. String In a Language

String 101 is in the language of the DFA below.
Start at A.

Start

20

. String In a Language

String 101 is in the language of the DFA below.

Follow arc labeled 1.

Start

21

Start

. String In a Language

String 101 is in the language of the DFA below.

Then arc labeled O from current state B.

J

22

. String In a Language

String 101 is in the language of the DFA below.

Finally arc labeled 1 from current state A. Result
IS an accepting state, so 101 is in the language.

Start

23

— Concluded

The language of our example DFA is:
{w | wis in {0,1}* and w does not have
two consecutive 1's}

N

These conditions
about w are true.

Such that...

Read a set former as
“The set of strings w...

24

Proofs of Set Equivalence

& Often, we need to prove that two
descriptions of sets are In fact the same
set.

®Here, one set is “the language of this
DFA,” and the other is “the set of
strings of O’s and 1’s with no
consecutive 1's.”

25

Proofs — (2)

€ In general, to prove S = T, we need
to provetwo parts: ScTand T € S.

That Is:
1. fwisinS, thenwisinT.
2. fwisinT, thenw s in S.

€ Here, S = the language of our running
DFA, and T = “no consecutive 1's.”

26

Part 1: ST

0 n0,1
- A C
@ To prove: if w is accepted by Ov® -
: Start O
then w has no consecutive 1's.

@ Proof is an induction on length of w.

¢ : Expand the inductive
hypothesis to be more detailed than the
statement you are trying to prove.

27

The Inductive Hypothesis

1. If (A, w) = A, then w has no
consecutive 1's and does not end In 1.
2. If (A, w) = B, then w has no
consecutive 1's and ends in a single 1.
€ Basis: |w| =0; i.e., w = €.
* holds since € has no 1’s at all.
+ (2) holds vacuously, since (A, €) is not B.

< If the “if” part of “if..then” Is false, ,,
the statement is true.

“length of”

_ 0 N0,1
Inductive Step A TP *¥C

Start 0
@ Assume (1) and (2) are true for strings
shorter than w, where |w| Is at least 1.

€®Because w is not empty, we can write
w = Xa, where a Is the last symbol of
w, and X Is the string that precedes.

@® |H is true for x.

29

0 10,1

Inductive Step — (2) A &8 *C

Start O

Need to prove (1) and (2) for w = xa.

@ (1) for wis: If (A, w) = A, then w has no
consecutive 1's and does not end In 1.

@ Since o(A, w) = A, (A, x) must be A or B,
and @4 must be 0 (look at the DFA).

€ By the IH, x has no 11's.

® Thus, w has no 11's and does not end in 1.

30

0 10,1

Inductive Step — (3) A &8 *C

Start O

€ Now, prove (2) for w = xa: If 0(A, w) =
B, then w has no 11’s and ends in 1.

® Since o(A, w) = B, 0(A, X) must be A,
and a must be 1 (look at the DFA).

€ By the IH, x has no 11's and does not
end in 1.

& Thus, w has no 11's and ends in 1.

31

Part2: TS

- Start
&® Contrapositive . If w is n accepted by

\ . contrapositive

Start 0 of “if X then Y” Is the

equivalent statement
then w has 11. “If not Y then not X.”

32

0 0,1
Using the Contrapositive 4+ ¢
Start 0
@ Because there is a unique transition
from every state on every input symbol,
each w gets the DFA to exactly one
State.

€ The only way w is not accepted is if it
gets to C.

33

Using the Contrapositive ||,

B @ 0,1
P (2) Star

€ The only way to get to C [formally:
O0(A,w) = C] is if w = x1y, x gets to B,
and y Is the tail of w that follows what
gets to C for the first time.

@ If 5(A,x) = B then surely x = z1 for

some z.
€ Thus, w = z11y and has 11.

34

Regular Languages

® A language L is regular if it is the
language accepted by some DFA.

* Note: the DFA must accept the strings
In L, no others.

€ Some languages are not regular.

¢+ Intuitively, regular languages “cannot
count” to arbitrarily high integers.

35

. A Nonregular Language

L, ={0"1" | n > 1}
&® \ote: a' is conventional fori a’s.
¢ Thus, 04 = 0000, e.g.

®Read: “The set of strings consisting of
n O’'s followed by n 1’s, such that n Is at
least 1.

#Thus, L, = {01, 0011, 000111,...}

36

Another

L, ={w | win {(,)}* and w Is balanced }

Balanced parentheses are those
sequences of parentheses that can
appear in an arithmetic expression.

¢E.g.: 0, 00, (), (O0)--

37

But Many Languages are
Regular

& They appear in many contexts and
have many useful properties.

¢ . the strings that represent
floating point numbers in your favorite
language Is a regular language.

38

. A Regular Language

L,={w]| win {0,1}* and w, viewed as a
binary integer is divisible by 23}
€ The DFA:

+ 23 states, named 0, 1,...,22.

* Correspond to the 23 remainders of an
Integer divided by 23.

¢ Start and only final state is O.

39

Transitions of the DFA for L,

@ If string w represents integer i, then
assume 0(0, w) = i%23.

€ Then wO represents integer 2i, so we
want 0(i%23, 0) = (2i)%23.

& Similarly: wl represents 2i+1, so we
want 0(i%23, 1) = (2i+1)%23.

& - §(15,0) = 30%23 = 7:
5(11,1) = 23%23 = 0.

40

Another

L,={w] win{0,1}* and w, viewed as the
reverse of a binary integer is divisible by 23}

4 : 01110100 is in L,, because its
reverse, 00101110 is 46 Iin binary.

& Hard to construct the DFA.

€ But there is a theorem that says the reverse
of a regular language Is also regular.

41

