
1

Deterministic Finite Automata

Alphabets, Strings, and Languages
Transition Graphs and Tables

Some Proof Techniques

2

Alphabets

An alphabet is any finite set of
symbols.
Examples:

ASCII, Unicode,
{0,1} (binary alphabet),
{a,b,c}, {s,o},
set of signals used by a protocol.

3

Strings

A string over an alphabet Σ is a list, each
element of which is a member of Σ.
 Strings shown with no commas or quotes,

e.g., abc or 01101.
Σ* = set of all strings over alphabet Σ.

The length of a string is its number of
positions.
ε stands for the empty string (string of

length 0).

4

Example: Strings

{0,1}* = {ε, 0, 1, 00, 01, 10, 11, 000,
001, . . . }
Subtlety: 0 as a string, 0 as a symbol

look the same.
 Context determines the type.

5

Languages

A language is a subset of Σ* for some
alphabet Σ.

Example: The set of strings of 0’s and
1’s with no two consecutive 1’s.
L = {ε, 0, 1, 00, 01, 10, 000, 001, 010,

100, 101, 0000, 0001, 0010, 0100,
0101, 1000, 1001, 1010, . . . }

Hmm… 1 of length 0, 2 of length 1, 3, of length 2, 5 of length
3, 8 of length 4. I wonder how many of length 5?

6

Deterministic Finite Automata

 A formalism for defining languages,
consisting of:

1. A finite set of states (Q, typically).
2. An input alphabet (Σ, typically).
3. A transition function (δ, typically).

4. A start state (q0, in Q, typically).
5. A set of final states (F ⊆ Q, typically).
 “Final” and “accepting” are synonyms.

7

The Transition Function

Takes two arguments: a state and an
input symbol.
δ(q, a) = the state that the DFA goes

to when it is in state q and input a is
received.
Note: always a next state – add a dead

state if no transition (Example on next
slide).

8

Love

Start

Love-15

15-Love
s

o

Love-30

15-all

30-Love

s

s

o

o

Love-40

15-30

30-15

40-Love

s

s

s

o

o

o

Server
Wins

Opp’nt
Wins

s

o

40-15

15-40

30-all

s

s

s

o

o

o

30-40

40-30

s

s

s

o

o

o

deuce
s

s

o

o
Ad-out

Ad-in

s

o
s

o

s

o

Dead

s, o

s, os, o

9

Graph Representation of DFA’s

Nodes = states.
Arcs represent transition function.
 Arc from state p to state q labeled by all

those input symbols that have transitions
from p to q.

Arrow labeled “Start” to the start state.
Final states indicated by double circles.

10

Example: Recognizing Strings
Ending in “ing”

nothing Saw i
i

Not i

Saw ing
g

i

Not i or g

Saw in
n

i

Not i or n

Start i

Not i

11

Example: Protocol for Sending
Data

Ready Sending
data in

ack

timeout

Start

12

Example: Strings With No 11

Start

1

0

A CB
1

0 0,1

String so far
has no 11,
does not
end in 1.

String so far
has no 11,
but ends in
a single 1.

Consecutive
1’s have
been seen.

13

Alternative Representation:
Transition Table

0 1

A A B
B A C
C C C

Rows = states

Columns =
input symbols

Final states
starred

*
*Arrow for

start state

Start

1

0

A CB 1
0 0,1

Each entry is δ
of the row and
column.

14

Convention: Strings and Symbols

 … w, x, y, z are strings.
 a, b, c,… are single input symbols.

15

Extended Transition Function

We describe the effect of a string of
inputs on a DFA by extending δ to a
state and a string.
Intuition: Extended δ is computed for

state q and inputs a1a2…an by following
a path in the transition graph, starting
at q and selecting the arcs with labels
a1, a2,…, an in turn.

16

Inductive Definition of
Extended δ

Induction on length of string.
Basis: δ(q, ε) = q
Induction: δ(q,wa) = δ(δ(q,w),a)
 Remember: w is a string; a is an input

symbol, by convention.

17

Example: Extended Delta
0 1

A A B
B A C
C C C

δ(B,011) = δ(δ(B,01),1) = δ(δ(δ(B,0),1),1) =

δ(δ(A,1),1) = δ(B,1) = C

18

Delta-hat

We don’t distinguish between the given
delta and the extended delta or delta-
hat.
The reason:
δ(q, a) = δ(δ(q, ε), a) = δ(q, a)˄˄

Extended deltas

19

Language of a DFA

Automata of all kinds define languages.
If A is an automaton, L(A) is its

language.
For a DFA A, L(A) is the set of strings

labeling paths from the start state to a
final state.
Formally: L(A) = the set of strings w

such that δ(q0, w) is in F.

20

Example: String in a Language

Start

1

0

A CB
1

0 0,1

String 101 is in the language of the DFA below.
Start at A.

21

Example: String in a Language

Start

1

0

A CB
1

0 0,1

Follow arc labeled 1.

String 101 is in the language of the DFA below.

22

Example: String in a Language

Start

1

0

A CB
1

0 0,1

Then arc labeled 0 from current state B.

String 101 is in the language of the DFA below.

23

Example: String in a Language

Start

1

0

A CB
1

0 0,1

Finally arc labeled 1 from current state A. Result
is an accepting state, so 101 is in the language.

String 101 is in the language of the DFA below.

24

Example – Concluded

The language of our example DFA is:
{w | w is in {0,1}* and w does not have

two consecutive 1’s}

Read a set former as
“The set of strings w…

Such that… These conditions
about w are true.

25

Proofs of Set Equivalence

Often, we need to prove that two
descriptions of sets are in fact the same
set.
Here, one set is “the language of this

DFA,” and the other is “the set of
strings of 0’s and 1’s with no
consecutive 1’s.”

26

Proofs – (2)

 In general, to prove S = T, we need
to prove two parts: S ⊆ T and T ⊆ S.
That is:

1. If w is in S, then w is in T.
2. If w is in T, then w is in S.

 Here, S = the language of our running
DFA, and T = “no consecutive 1’s.”

27

Part 1: S ⊆ T

To prove: if w is accepted by
then w has no consecutive 1’s.
Proof is an induction on length of w.
Important trick: Expand the inductive

hypothesis to be more detailed than the
statement you are trying to prove.

Start

1

0

A CB 1
0 0,1

28

The Inductive Hypothesis

1. If δ(A, w) = A, then w has no
consecutive 1’s and does not end in 1.

2. If δ(A, w) = B, then w has no
consecutive 1’s and ends in a single 1.

 Basis: |w| = 0; i.e., w = ε.
 (1) holds since ε has no 1’s at all.
 (2) holds vacuously, since δ(A, ε) is not B.

“length of”
Important concept:
If the “if” part of “if..then” is false,
the statement is true.

29

Inductive Step

Assume (1) and (2) are true for strings
shorter than w, where |w| is at least 1.
Because w is not empty, we can write

w = xa, where a is the last symbol of
w, and x is the string that precedes.
IH is true for x.

Start

1

0

A CB 1
0 0,1

30

Inductive Step – (2)

Need to prove (1) and (2) for w = xa.
(1) for w is: If δ(A, w) = A, then w has no

consecutive 1’s and does not end in 1.
Since δ(A, w) = A, δ(A, x) must be A or B,

and a must be 0 (look at the DFA).
By the IH, x has no 11’s.
Thus, w has no 11’s and does not end in 1.

Start

1

0

A CB 1
0 0,1

31

Inductive Step – (3)

Now, prove (2) for w = xa: If δ(A, w) =
B, then w has no 11’s and ends in 1.
Since δ(A, w) = B, δ(A, x) must be A,

and a must be 1 (look at the DFA).
By the IH, x has no 11’s and does not

end in 1.
Thus, w has no 11’s and ends in 1.

Start

1

0

A CB 1
0 0,1

32

Part 2: T ⊆ S

Now, we must prove: if w has no 11’s,
then w is accepted by

Contrapositive : If w is not accepted by

then w has 11.

Start

1

0

A CB 1
0 0,1

Start

1

0

A CB 1
0 0,1

Key idea: contrapositive
of “if X then Y” is the
equivalent statement
“if not Y then not X.”

X

Y

33

Using the Contrapositive

Because there is a unique transition
from every state on every input symbol,
each w gets the DFA to exactly one
state.
The only way w is not accepted is if it

gets to C.

Start

1

0

A CB 1
0 0,1

34

Using the Contrapositive
– (2)

The only way to get to C [formally:
δ(A,w) = C] is if w = x1y, x gets to B,
and y is the tail of w that follows what
gets to C for the first time.
If δ(A,x) = B then surely x = z1 for

some z.
Thus, w = z11y and has 11.

Start

1

0

A CB 1
0 0,1

35

Regular Languages

A language L is regular if it is the
language accepted by some DFA.
 Note: the DFA must accept only the strings

in L, no others.

Some languages are not regular.
 Intuitively, regular languages “cannot

count” to arbitrarily high integers.

36

Example: A Nonregular Language

L1 = {0n1n | n ≥ 1}

Note: ai is conventional for i a’s.
 Thus, 04 = 0000, e.g.

Read: “The set of strings consisting of
n 0’s followed by n 1’s, such that n is at
least 1.
Thus, L1 = {01, 0011, 000111,…}

37

Another Example

L2 = {w | w in {(,)}* and w is balanced }
Balanced parentheses are those

sequences of parentheses that can
appear in an arithmetic expression.
E.g.: (), ()(), (()), (()()),…

38

But Many Languages are
Regular

They appear in many contexts and
have many useful properties.
Example: the strings that represent

floating point numbers in your favorite
language is a regular language.

39

Example: A Regular Language

L3 = { w | w in {0,1}* and w, viewed as a
binary integer is divisible by 23}
The DFA:
 23 states, named 0, 1,…,22.
 Correspond to the 23 remainders of an

integer divided by 23.
 Start and only final state is 0.

40

Transitions of the DFA for L3

If string w represents integer i, then
assume δ(0, w) = i%23.

Then w0 represents integer 2i, so we
want δ(i%23, 0) = (2i)%23.

Similarly: w1 represents 2i+1, so we
want δ(i%23, 1) = (2i+1)%23.
Example: δ(15,0) = 30%23 = 7;
δ(11,1) = 23%23 = 0.

41

Another Example

L4 = { w | w in {0,1}* and w, viewed as the
reverse of a binary integer is divisible by 23}
Example: 01110100 is in L4, because its

reverse, 00101110 is 46 in binary.
Hard to construct the DFA.
But there is a theorem that says the reverse

of a regular language is also regular.

