
1

Welcome to the Stanford 
Automata Theory Course

Why Study Automata?
What the Course is About



2

Why Study Automata?

A survey of Stanford grads 5 years out 
asked which of their courses did they 
use in their job.
Basics like intro-programming took the 

top spots, of course.
But among optional courses, CS154 

stood remarkably high.
 3X the score for AI, for example.



3

How Could That Be?

Regular expressions are used in many 
systems.
 E.g., UNIX a.*b.
 E.g., DTD’s describe XML tags with a RE 

format like person (name, addr, child*).

Finite automata model protocols, 
electronic circuits.



4

How? – (2)

Context-free grammars are used to 
describe the syntax of essentially every 
programming language.
 Not to forget their important role in 

describing natural languages.

And DTD’s taken as a whole, are really 
CFG’s.



5

How? – (3)

When developing solutions to real 
problems, we often confront the 
limitations of what software can do.
 Undecidable things – no program 

whatever can do it.
 Intractable things – there are programs, 

but no fast programs.

Automata theory gives you the tools.



6

Other Good Stuff

We’ll learn how to deal formally with 
discrete systems.
 Proofs: You never really prove a program 

correct, but you need to be thinking of why 
a tricky technique really works.

We’ll gain experience with abstract 
models and constructions.
Models layered software architectures.



7

Automata Theory – Gateway Drug

This theory has attracted people of a 
mathematical bent to CS, to the 
betterment of all.
 Ken Thompson – before UNIX was working 

on compiling regular expressions.
 Jim Gray – thesis was automata theory 

before he got into database systems and 
made fundamental contributions there.



8

Course Outline

Regular Languages and their 
descriptors:
 Finite automata, nondeterministic finite 

automata, regular expressions.
 Algorithms to decide questions about 

regular languages, e.g., is it empty?
 Closure properties of regular languages.



9

Course Outline – (2)

Context-free languages and their 
descriptors:
 Context-free grammars, pushdown 

automata.
 Decision and closure properties.



10

Course Outline – (3)

Recursive and recursively enumerable 
languages.
 Turing machines, decidability of problems.
 The limit of what can be computed.

Intractable problems.
 Problems that (appear to) require 

exponential time.
 NP-completeness and beyond.



11

Text (Not Required)

Hopcroft, Motwani, Ullman, Automata 
Theory, Languages, and Computation
3rd Edition.
Course covers essentially the entire 

book.


