

Introduction

Why Study Algorithms?

Design and Analysis of Algorithms I

• important for all other branches of computer science

- important for all other branches of computer science
- plays a key role in modern technological innovation

- important for all other branches of computer science
- plays a key role in modern technological innovation
 - "Everyone knows Moore's Law a prediction made in 1965 by Intel cofounder Gordon Moore that the density of transistors in integrated circuits would continue to double every 1 to 2 years....in many areas, performance gains due to improvements in algorithms have vastly exceeded even the dramatic performance gains due to increased processor speed."
 - Excerpt from *Report to the President and Congress: Designing a Digital Future,* December 2010 (page 71).

- important for all other branches of computer science
- plays a key role in modern technological innovation
- provides novel "lens" on processes outside of computer science and technology
 - quantum mechanics, economic markets, evolution

- important for all other branches of computer science
- plays a key role in modern technological innovation
- provides novel "lens" on processes outside of computer science and technology
- challenging (i.e., good for the brain!)

- important for all other branches of computer science
- plays a key role in modern technological innovation
- provides novel "lens" on processes outside of computer science and technology
- challenging (i.e., good for the brain!)
- fun

The Grade-School Algorithm

The Algorithm Designer's Mantra

"Perhaps the most important principle for the good algorithm designer is to refuse to be content."

-Aho, Hopcroft, and Ullman, The Design and Analysis of Computer Algorithms, 1974

(AN WE DO DETTER? [than the "obros" method)

A Recursive Algorithm
Write
$$x = 10^{2}a + b$$
 and $y = 10^{n/2}c + d$
where a build are $\frac{1}{2} - digit numbers.$
Lexample: $a = 56, b = 18, c = 12, d = 34$
Then $x \cdot y = (10^{n/2}a + b)(10^{n/2}c + d)$
 $= (10^{n}ac + 10^{n/2}(ad + bc) + bd)$ (*)
I dee: recursively compute $ac_{1}ad_{1}bc_{1}bd_{1}$ (then
Compute (th) in the obvious way. Complex complexities

Upshot : only need 3 recursive multiplications Land some additions. Q: which is the fastest algorithm?