
Introduction

About The Course

Design and Analysis

of Algorithms I

Course Topics

• Vocabulary for design and analysis of algorithms

• Divide and conquer algorithm design paradigm

• Randomization in algorithm design

Tim Roughgarden

• Randomization in algorithm design

• Primitives for reasoning about graphs

• Use and implementation of data structures

Course Topics

• Vocabulary for design and analysis of algorithms

– E.g., “Big-Oh” notation

– “sweet spot” for high-level reasoning about algorithms

Tim Roughgarden

Course Topics

• Vocabulary for design and analysis of algorithms

• Divide and conquer algorithm design paradigm

Tim Roughgarden

Course Topics

• Vocabulary for design and analysis of algorithms

• Divide and conquer algorithm design paradigm

– Will apply to: Integer multiplication, sorting, matrix

Tim Roughgarden

– Will apply to: Integer multiplication, sorting, matrix

multiplication, closest pair

– General analysis methods (“Master Method/Theorem”)

Course Topics

• Vocabulary for design and analysis of algorithms

• Divide and conquer algorithm design paradigm

• Randomization in algorithm design

Tim Roughgarden

• Randomization in algorithm design

– Will apply to: QuickSort, primality testing, graph

partitioning, hashing.

Course Topics

• Vocabulary for design and analysis of algorithms

• Divide and conquer algorithm design paradigm

• Randomization in algorithm design

Tim Roughgarden

• Randomization in algorithm design

• Primitives for reasoning about graphs

– Connectivity information, shortest paths, structure of

information and social networks.

Course Topics

• Vocabulary for design and analysis of algorithms

• Divide and conquer algorithm design paradigm

• Randomization in algorithm design

Tim Roughgarden

• Randomization in algorithm design

• Primitives for reasoning about graphs

• Use and implementation of data structures

– Heaps, balanced binary search trees, hashing and some

variants (e.g., bloom filters)

Topics in Sequel Course

• Greedy algorithm design paradigm

Tim Roughgarden

Topics in Sequel Course

• Greedy algorithm design paradigm

• Dynamic programming algorithm design paradigm

Tim Roughgarden

Topics in Sequel Course

• Greedy algorithm design paradigm

• Dynamic programming algorithm design paradigm

• NP-complete problems and what to do about them

Tim Roughgarden

• NP-complete problems and what to do about them

Topics in Sequel Course

• Greedy algorithm design paradigm

• Dynamic programming algorithm design paradigm

• NP-complete problems and what to do about them

Tim Roughgarden

• NP-complete problems and what to do about them

• Fast heuristics with provable guarantees

• Fast exact algorithms for special cases

• Exact algorithms that beat brute-force search

Skills You’ll Lean

• Become a better programmer

Tim Roughgarden

Skills You’ll Lean

• Become a better programmer

• Sharpen your mathematical and analytical skills

Tim Roughgarden

Skills You’ll Lean

• Become a better programmer

• Sharpen your mathematical and analytical skills

• Start “thinking algorithmically”

Tim Roughgarden

• Start “thinking algorithmically”

Skills You’ll Lean

• Become a better programmer

• Sharpen your mathematical and analytical skills

• Start “thinking algorithmically”

Tim Roughgarden

• Start “thinking algorithmically”

• Literacy with computer science’s “greatest hits”

Skills You’ll Lean

• Become a better programmer

• Sharpen your mathematical and analytical skills

• Start “thinking algorithmically”

Tim Roughgarden

• Start “thinking algorithmically”

• Literacy with computer science’s “greatest hits”

• Ace your technical interviews

Who Are You?

• It doesn’t really matter. (It’s a free course, after all.)

Tim Roughgarden

Who Are You?

• It doesn’t really matter. (It’s a free course, after all.)

• Ideally, you know some programming.

Tim Roughgarden

Who Are You?

• It doesn’t really matter. (It’s a free course, after all.)

• Ideally, you know some programming.

• Doesn’t matter which language(s) you know.

Tim Roughgarden

• Doesn’t matter which language(s) you know.

– But you should be capable of translating high-level

algorithm descriptions into working programs in some

programming language.

Who Are You?

• It doesn’t really matter. (It’s a free course, after all.)

• Ideally, you know some programming.

• Doesn’t matter which language(s) you know.

Tim Roughgarden

• Doesn’t matter which language(s) you know.

• Some (perhaps rusty) mathematical experience.

– Basic discrete math, proofs by induction, etc.

Who Are You?

• It doesn’t really matter. (It’s a free course, after all.)

• Ideally, you know some programming.

• Doesn’t matter which language(s) you know.

• Some (perhaps rusty) mathematical experience.

Tim Roughgarden

• Some (perhaps rusty) mathematical experience.

– Basic discrete math, proofs by induction, etc.

• Excellent free reference: “Mathematics for Computer Science”,
by Eric Lehman and Tom Leighton. (Easy to find on the Web.)

Supporting Materials

• All (annotated) slides available from course site.

Tim Roughgarden

Supporting Materials

• All (annotated) slides available from course site.

• No required textbook. A few of the many good ones:

– Kleinberg/Tardos, Algorithm Design, 2005.

– Dasgupta/Papadimitriou/Vazirani, Algorithms, 2006.

Tim Roughgarden

– Dasgupta/Papadimitriou/Vazirani, Algorithms, 2006.

– Cormen/Leiserson/Rivest/Stein, Introduction to

Algorithms, 2009 (3rd edition).

– Mehlhorn/Sanders, Data Structures and Algorithms: The

Basic Toolbox, 2008.

Supporting Materials

• All (annotated) slides available from course site.

• No required textbook. A few of the many good ones:
– Kleinberg/Tardos, Algorithm Design, 2005.

Dasgupta/Papadimitriou/Vazirani, Algorithms, 2006.

Tim Roughgarden

– Dasgupta/Papadimitriou/Vazirani, Algorithms, 2006.

– Cormen/Leiserson/Rivest/Stein, Introduction to Algorithms, 2009 (3rd edition).

– Mehlhorn/Sanders, Data Structures and Algorithms: The Basic Toolbox, 2008.

• No specific development environment required.

– But you should be able to write and execute programs.

Assessment

• No grades per se. (Details on a certificate of

accomplishment TBA.)

• Weekly homeworks.

Tim Roughgarden

• Weekly homeworks.

– Test understand of material

– Synchronize students, greatly helps discussion forum

– Intellectual challenge

Assessment

• No grades per se. (Details on a certificate of
accomplishment TBA.)

• Weekly homeworks.

• Assessment tools currently just a “1.0” technology.

Tim Roughgarden

• Assessment tools currently just a “1.0” technology.

– We’ll do our best!

• Will sometimes propose harder “challenge problems”

– Will not be graded; discuss solutions via course forum

