
Data Structures

Red-Black Trees

Design and Analysis

of Algorithms I

Binary Search Tree Structure

-- exactly one node per key

-- most basic version :

each node has

-- left child pointer

Root

Leaves-- left child pointer

-- right child pointer

-- parent pointer

SEARCH TREE PROPERTY :
(should hold at every node of the

search tree)

Toward the root

All keys > x

All keys < x

The Height of a BST

Note : many possible trees for a set of

keys.

Note : height could be anywhere from

Height = 2

(aka depth) longest

root-leaf path

Note : height could be anywhere from

to

Worst case,

a chain

Best case,

perfectly

balanced
Height = 4

Balanced Search Trees
Idea : ensure that height is always O(log(n)) [best possible]

⇒Search / Insert / Delete / Min / Max / Pred / Succ will then run

in O(log(n)) time [n = # of keys in tree]

Example : red-black trees [Bayes ‘72, Guibas-Sedgewick ‘78]

Tim Roughgarden

Example : red-black trees [Bayes ‘72, Guibas-Sedgewick ‘78]

[see also AUL trees, splay trees, B trees]

Red-Black Invariants
1. Each node red or black

2. Root is black

3. No 2 reds in a row

[red node => only black children]

Tim Roughgarden

[red node => only black children]

4. Every root-NULL path has same number of black

nodes
Like in an

unsuccessful search

Example #1
Claim : a chain of length 3 cannot be a red-

black tree

Proof

Tim Roughgarden

Proof

1 black node on an

unsuccessful search

for 0

2 black

nodes on an

unsuccessful

search for 4

Example #2

Tim Roughgarden

Height Guarantee
Claim : every red-black tree with n nodes has

height

Proof : Observation : if every root-NUL path has >=

Tim Roughgarden

Proof : Observation : if every root-NUL path has >=

k nodes, then tree includes (at the top) a perfectly

balanced search tree of depth k-1.

=> Size n of the tree

must Be at least

[k = 3]

Height Guarantee (con’d)
Story so far : size , where k = minimum # of nodes on

root – NULL path

=>

Thus : in a red-black tree with n nodes, there is a root-NULL path

with at most black nodes.

Tim Roughgarden

with at most black nodes.

By 4th Invariant : every root-NULL path has

black nodes

By 3rd Invariant : every root-NULL path has

total nodes.

Which of the search tree operations have to be re-implemented

so that the Red-Black invariants are maintained?

Search

Delete

Insert and Delete

None of the above

