

Data Structures

Red-Black Trees

Design and Analysis of Algorithms I

Binary Search Tree Structure

- -- exactly one node per key
- -- most basic version :
 - each node has
 - -- left child pointer
 - -- right child pointer
 - -- parent pointer

SEARCH TREE PROPERTY :

(should hold at every node of the search tree)

Balanced Search Trees

Idea : ensure that height is always O(log(n)) [best possible]
⇒Search / Insert / Delete / Min / Max / Pred / Succ will then run in O(log(n)) time [n = # of keys in tree]

Example : red-black trees [Bayes '72, Guibas-Sedgewick '78]

[see also AUL trees, splay trees, B trees]

Red-Black Invariants

- 1. Each node red or black
- 2. Root is black
- 3. No 2 reds in a row

[red node => only black children]

4. Every root-NULL path has same number of black nodes

Like in an unsuccessful search

Example #1

Claim : a chain of length 3 cannot be a redblack tree

Example #2

Height Guarantee

<u>Claim</u> : every red-black tree with n nodes has height $\leq 2 \log_2(n+1)$

Proof : Observation : if every root-NUL path has >= k nodes, then tree includes (at the top) a perfectly balanced search tree of depth k-1.

Height Guarantee (con'd)

Story so far : size $n \ge 2^k - 1$, where k = minimum # of nodes on root – NULL path => $k \le log_2(n+1)$

<u>Thus</u>: in a red-black tree with n nodes, there is a root-NULL path with at most $\log_2(n+1)$ black nodes.

By 4th Invariant: every root-NULL path has $\leq \log_2(n+1)$ black nodesBy 3rd Invariant: every root-NULL path has $\leq 2 \log_2(n+1)$ total nodes.

Which of the search tree operations have to be re-implemented so that the Red-Black invariants are maintained?

O Search

🔾 Delete

- Insert and Delete
- \bigcirc None of the above