
Data Structures

Binary Search      Binary Search      

Tree Basics
Design and Analysis 

of Algorithms I



Balanced Search Trees:                 

Supported Operations
Raison d’etre : like sorted array + fast (logarithmic) inserts + deletes !

OPERATIONS RUNNING TIME

SEARCH θ(log(n))
Also 

SEARCH θ(log(n))

SELECT O(log(n))

MIN/MAX O(log(n))

PRED/SUCC O(log(n))

RANK O(log(n))

OUTPUT IN SORTED ORDER O(n)

INSERT O(log(n))

DELETE O(log(n))

Also 

supported 

by hash 

tables

Up from 

O(1)

newAlso 

supported 

by heaps



Binary Search Tree Structure

-- exactly one node per key

-- most basic version :

each node has

-- left child pointer

Root

Leaves
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-- left child pointer

-- right child pointer

-- parent pointer

SEARCH TREE PROPERTY :
( should hold at every node of the 

search tree )

Toward the root

All keys > x

All keys < x



The Height of a BST

Note : many possible trees for a set of 

keys.

Note : height could be anywhere from

Height = 2

(aka depth) longest 

root-leaf path
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Note : height could be anywhere from

to  

Worst case, 

a chain

Best case, 

perfectly 

balanced
Height = 4



To Search for key k in tree T

-- start at the root

-- traverse left / right child pointers as needed

Searching and Inserting

If k < key at If k > key at 
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-- return node with key k or NULL, as appropriate

To Insert a new key k into a tree T

-- search for k (unsuccessfully)

-- rewire final NULL ptr to point to new node with key k

If k < key at 

current node

If k > key at 

current node

Exercise : 

preserves 

search tree 

property!





Min, Max, Pred, And Succ
To compute the minimum (maximum) key of a tree

- Start at root

- Follow left child pointers (right ptrs, 

for maximum) untill you cant anymore
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for maximum) untill you cant anymore

(return last key found)

To compute the predecessor of key k

- Easy case : If k’s left subtree nonempty, return max 

key in left subtree

- Otherwise : follow parent pointers until you get to a 

key less than k.

Happens first time you “turn left”

Exercise : 

prove this 

works





In-Order Traversal
TO PRINT OUT KEYS IN INCREASING ORDER

-Let r = root of search tree, with subtrees TL and TR

- recurse on TL

[by recursion (induction) prints out keys of TL
All smaller 

keys
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[by recursion (induction) prints out keys of TL

in increasing order ]

-Print out r’s key

-Recurse on TR

[prints out keys of TR in increasing order]

RUNNING TIME

O(1) time, n recursive 

calls => O(n) total

keys

All smaller 

keys



Deletion

TO DELETE A KEY K FROM A SEARCH TREE

- SEARCH for k

EASY CASE (k’s node has no children)
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EASY CASE (k’s node has no children)

-Just delete k’s node from tree, done

MEDIUM CASE (k’s node has one child)

( unique child assumes position 

previously held by k’s node )



Deletion (con’d)
DIFFICULT CASE (k’s node has 2 children)

-Compute k’s predecessor l

[ i.e., traverse k’s (non-NULL) left child ptr, then

right child ptrs until no longer possible ]
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right child ptrs until no longer possible ]

- SWAP k and l !

NOTE : in it’s new position, k has no right child !

=> easy to delete or splice out k’s new node

Exercise : at end, have a valid search tree !

RUNNING 

TIME :

θ(height)



Select and Rank
Idea : store a little bit of extra info at each tree node 

about the tree itself (i.e., not about the data)

Example Augmentation : size(x) = # of tree nodes in 

subtree rooted at x.
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subtree rooted at x.

Note : if x has children y and z, 

then size(y) + size(z) + 1

Also : easy to keep sizes up-to-date during an Insertion or 

Deletion (you check!)

Population in 

left subtree

Right subtree x itself



Select and Rank (con’d)
HOW TO SELECT Ith ORDER STATISTIC FROM 

AUGMENTED SEARCH TREE (with subtree sizes)

- start at root x, with children y and z

- let a = size(y) [a = 0 if x has no left child ]

- if a = i-1, return x’s key
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- if a = i-1, return x’s key

- if a >= I, recursively compute ith order statistic of    

search tree rooted at y

- if a < i-1 recursively compute (i-a-1)th order statistic 

of search tree rooted at z

RUNNING TIME = θ(height).             [ EXERCISE : how to implement RANK ?

Smaller 

keys

Larger 

keys


