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Balanced Search Trees:
Supported Operations

Raison d’etre : like sorted array + fast (logarithmic) inserts + deletes !

OPERATIONS RUNNING TIME

SEARCH B(log(n))

SELECT Also - O(log(n)) [ Up from
Su orte

MIN/MAX byphpash O(log(n)) | °1)

PRED/SUCC tables O(log(n)

RANK O(log(n))

OUTPUT IN SORTED ORDER e O(n)

INSERT supported O(Iog(n))jfnew

DELETE by heaps O(log(n))



Binary Search Tree Structure

-- exactly one node per key
-- most basic version :
each node has
-- left child pointer
-- right child pointer
-- parent pointer

SEARCH TREE PROPERTY :

( should hold at every node of the
search tree)

All keys < x

Root @
Y

Leaves A @6

l[' Toward the root

All keys > x
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The Height of a BST reight =2

Note : many possible trees for a set of

keys. (aka depth) longest

root-leaf path
Note | height|could be anywhere from

~logyn|to ™~

Best case,
Worst case,
, perfectly
a chain
balanced

©
@
o

@/ Height = 4
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Searching and Inserting

To Search for key k in tree T /@
-- start at the root @ @

AU £ &
-~ traverse@yfj/mgh; child pointers as needed \©

If k <keyat Ifk>keyat
current node current node

A

-- return node with key k or NULL, as appropriate
To Insert a new key k into a tree T.~7=xercke:

preserves

-- search for k (unsuccessfully) search tree
property!

-- rewire final NULL ptr to point to new node with key k
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The worst-case running time of Search (or Insert) operation in a
binary search tree containing n keys is...?

O 6(1) @ @ 5

O 6(log,n) (Z]/
(O 6(heighty >

O o)




Min, Max, Pred, And Succ

To compute the minimum (maximum) key of a tree
- Start at root

- Follow left child pointers (right ptrs,

for maximum) untill you cant anymore Cz >

(return last key found)

To compute the predecessor of key k N

- Easy case : If k’s left subtree nonempty, return max Exercise :
key in left subtree Happens first time you “turn left” >\|c,)vr§rvkesth|s
- Otherwise : follow parent pointers until you geﬁ toa

key less than k. N
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The worst-case running time of the Max operation in a binary
search tree containing n keys is...?

&S
0 e o & 8
O 6(log,n) Cis’

(O otueigin > &

O o)



In-Order Traversal
TO PRINT OUT KEYS IN INCREASING ORDER

-Let r = root of search tree, with subtrees TL and TR /

™~
- recurse on TL — l
[by recursion (induction) prints out keys of TL kevs 75

in increasing order ] RUNNING TIME All smaller
-Print out r’s key O(1) time, n recursive keys
_Recurse on TR calls => O(n) total s \
. . . o B
[prints out keys of TR in increasing order] \.® (‘6
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Deletion

TO DELETE A KEY K FROM A SEARCH TREE

- SEARCH for k
EASY CASE (k’s node has no children)

-Just delete k’s node from tree, done

MEDIUM CASE (k’s node has one child)
( unique child assumes position
previously held by k’s node )
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Deletion (con’d) w2

8l

DIFFICULT CASE (k’s node has 2 children) ~
: (D
-Compute k’s predecessor | @é
[i.e., traverse k’s (non-NULL) left child ptr, then qyfx?
right child ptrs until no longer possible ]
-SWAP kand |'! RUNNING
NOTE :in it’s new position, k has no right child | TIME :
B(height)

=> easy to delete or splice out k’s new node

Exercise : at end, have a valid search tree !
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Select and Rank

Idea : store a little bit of extra info at each tree node
about the tree itself (i.e., not about the data) (%ﬂ;s

9(5/ 2
Example Augmentation : size(x) = # of tree nodes in ‘@ E)\
subtree rooted at x.

Note : if x has children y and z,
thenjze(y) + sizi(z) +

Populationin  Right subtree  yitself
left subtree

—

Also : easy to keep sizes up-to-date during an Insertion or
Deletion (you check!)
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Select and Rank (con’d)

HOW TO SELECT It ORDER STATISTIC FROM
AUGMENTED SEARCH TREE (with subtree sizes)

- start at root x, with children y and z C.B\
- let a = size(y) [a = 0 if x has no left child ] ®
-if a =i-1, return x’s key (_%

_ . — . .th . .

if a >= 1, recursively compute i*" order statistic of o e Larger
search tree rooted at y keys keys
- if a < i-1 recursively compute (i-a-1)t" order statistic
of search tree rooted at z

RUNNING TIME = B(height). [ EXERCISE : how to implement RANK ?

Tim Roughgarden



