Data Structures
A\

% Binary Search
Tree Basics

Design and Analysis
of Algorithms |

Balanced Search Trees:
Supported Operations

Raison d’etre : like sorted array + fast (logarithmic) inserts + deletes !

OPERATIONS RUNNING TIME

SEARCH B(log(n))

SELECT Also - O(log(n)) [Up from
Su orte

MIN/MAX byphpash O(log(n)) | °1)

PRED/SUCC tables O(log(n)

RANK O(log(n))

OUTPUT IN SORTED ORDER e O(n)

INSERT supported O(Iog(n))jfnew

DELETE by heaps O(log(n))

Binary Search Tree Structure

-- exactly one node per key
-- most basic version :
each node has
-- left child pointer
-- right child pointer
-- parent pointer

SEARCH TREE PROPERTY :

(should hold at every node of the
search tree)

All keys < x

Root @
Y

Leaves A @6

l[' Toward the root

All keys > x

Tim Roughgarden

The Height of a BST reight =2

Note : many possible trees for a set of

keys. (aka depth) longest

root-leaf path
Note | height|could be anywhere from

~logyn|to ™~

Best case,
Worst case,
, perfectly
a chain
balanced

©
@
o

@/ Height = 4

Tim Roughgarden

Searching and Inserting

To Search for key k in tree T /@
-- start at the root @ @

AU £ &
-~ traverse@yfj/mgh; child pointers as needed \©

If k <keyat Ifk>keyat
current node current node

A

-- return node with key k or NULL, as appropriate
To Insert a new key k into a tree T.~7=xercke:

preserves

-- search for k (unsuccessfully) search tree
property!

-- rewire final NULL ptr to point to new node with key k

Tim Roughgarden

The worst-case running time of Search (or Insert) operation in a
binary search tree containing n keys is...?

O 6(1) @ @ 5

O 6(log,n) (Z]/
(O 6(heighty >

O o)

Min, Max, Pred, And Succ

To compute the minimum (maximum) key of a tree
- Start at root

- Follow left child pointers (right ptrs,

for maximum) untill you cant anymore Cz >

(return last key found)

To compute the predecessor of key k N

- Easy case : If k’s left subtree nonempty, return max Exercise :
key in left subtree Happens first time you “turn left” >\|c,)vr§rvkesth|s
- Otherwise : follow parent pointers until you geﬁ toa

key less than k. N

Tim Roughgarden

The worst-case running time of the Max operation in a binary
search tree containing n keys is...?

&S
0 e o & 8
O 6(log,n) Cis’

(O otueigin > &

O o)

In-Order Traversal
TO PRINT OUT KEYS IN INCREASING ORDER

-Let r = root of search tree, with subtrees TL and TR /

™~
- recurse on TL — l
[by recursion (induction) prints out keys of TL kevs 75

in increasing order] RUNNING TIME All smaller
-Print out r’s key O(1) time, n recursive keys
_Recurse on TR calls => O(n) total s \
. . . o B
[prints out keys of TR in increasing order] \.® (‘6

Tim Roughgarden

Deletion

TO DELETE A KEY K FROM A SEARCH TREE

- SEARCH for k
EASY CASE (k’s node has no children)

-Just delete k’s node from tree, done

MEDIUM CASE (k’s node has one child)
(unique child assumes position
previously held by k’s node)

Tim Roughgarden

Deletion (con’d) w2

8l

DIFFICULT CASE (k’s node has 2 children) ~
: (D
-Compute k’s predecessor | @é
[i.e., traverse k’s (non-NULL) left child ptr, then qyfx?
right child ptrs until no longer possible]
-SWAP kand |'! RUNNING
NOTE :in it’s new position, k has no right child | TIME :
B(height)

=> easy to delete or splice out k’s new node

Exercise : at end, have a valid search tree !

Tim Roughgarden

Select and Rank

Idea : store a little bit of extra info at each tree node
about the tree itself (i.e., not about the data) (%ﬂ;s

9(5/ 2
Example Augmentation : size(x) = # of tree nodes in ‘@ E)\
subtree rooted at x.

Note : if x has children y and z,
thenjze(y) + sizi(z) +

Populationin Right subtree yitself
left subtree

—

Also : easy to keep sizes up-to-date during an Insertion or
Deletion (you check!)

Tim Roughgarden

Select and Rank (con’d)

HOW TO SELECT It ORDER STATISTIC FROM
AUGMENTED SEARCH TREE (with subtree sizes)

- start at root x, with children y and z C.B\
- let a = size(y) [a = 0 if x has no left child] ®
-if a =i-1, return x’s key (_%

_ . — . .th . .

if a >= 1, recursively compute i*" order statistic of o e Larger
search tree rooted at y keys keys
- if a < i-1 recursively compute (i-a-1)t" order statistic
of search tree rooted at z

RUNNING TIME = B(height). [EXERCISE : how to implement RANK ?

Tim Roughgarden

