| Data Structures
B\ A

Universal Hash
Functions: Performance

Guarantees (Chaining)

Design and Analysis
of Algorithms |

Overview of Universal Hashing

Next : details on randomized solution (in 3 parts).

Part 1 : proposed definition of a “good random hash function”.
(“universal family of hash functions”)

Part 3 : concrete example of simple + practical such functions

Part 4 : justifications of definition : “good functions” lead to “good
performance”

Tim Roughgarden

Universal Hash Functions

Definition : Let H be a set of hash function from U to {0,1,2,..,n-1}

H is universal if and only if :
Forall x,y € U (withz # vy)

Pricmlz,y collide; h(x) =h(y)] <1/n (n = # of buckets)
When h is chosen uniformly at random at random from H.

(i.e., collision probability as small as with “gold standard” of perfectly
random hashing)

Tim Roughgarden

Chaining: Constant-Time Guarantee

Scenario : hash table implemented with chaining. Hash function h
chosen uniformly at random from universal family H.

Theorem : [Carter-Wegman 1979]
All operations run in O(1) time. (for every data set S)

Caveats : 1.) in expectation over the random choice of the hash
function h. (h = # of buckets)

2.) assumes |S| =0O(n) [i.e., load a = 151 =0(1)]

n
3.) assumes takes O(1) time to evaluate hash function

Tim Roughgarden

Proof (Part |)

Will analyze an unsuccessful Lookup
(other operations only faster).

of buckets
So : Let S = data set with |S| = O(n/

Consider Lookup for x % S (arbitrary data set S)

Running Time : O(f) + O([list length in A[h(x)])

\

Compute Traverse A random variable,
h(x) list L depends on hash
function h

Tim Roughgarden

A General Decomposition Principle

Collision : distinct x,y in U such that h(x) = h(y). \I
J= B
/

Solution#1: (separate) chaining.
-- keep linked list in each bucket 5"t‘¢*<
-- given a key/object x, perform Insert/Delete/Lookup in the

listin Alh bucket for x
linked list for x

Solution#2 : open addressing. (only one object per bucket)
-- hash function now specifies probe sequence h1(x), h2(x), ...

(keep trying till find open slot) use 2 hash functions
-- examples : linear probing (look consecutively), double hashing

Tim Roughgarden

Proof (Part Il)

Let L = list length in A[h(x)].

—

Fory € S (so, y # z) define 2, =—_ (1) iftfrll(v) = hix]
otherwise

Note : L:ZA?J -

ye s

So: B[] =3 E[Z)

Recall

—

Z’y — | 1if h(y) =h(x)
O otherwise
What does E[Z,,] evaluate to? —

Elzy]=0-Prlz, =0]+1-Pr|z, =1]

O Pr[h(y) = 0]
O Pr[h(y) # x]
O Pr[h(y) = h(x)]
O Pr[a(y) # h(x)]

Proof (Part Il)

Let L = list length in A[h(x)].

—

Fory € S (so, y # z) define 2, =—_ (1) iftfrll(v) = hix]
otherwise

Note : L:ZA?J -

ye s

So: B[] =Y E[Z,] =) Prihy) = hz)]

yeS yes

Tim Roughgarden

Which of the following is the smallest valid upper bound on
Prh(y) = h(x)]?

2
O/ By definition of a universal family
1/n of hash functions
O1/2

O1-1/n

Proof (Part II)

Let L = list length in A[h(x)].

Fory € S (so, y # x) define 2, —- égt:(g'r);i:e(X)

Note: L=)> A, -

yes
so: B[] =Y E[7,) =) Priby) =h(z)]
yEeS yeS’ "
Since H is universal —> < Z —
_ ‘S‘ yES Provided |S| = O(n)

— = load a = 0O(1) Q.E.D.

n Tim Roughgarden

