
Data Structures

Universal Hash Universal Hash

Functions: Performance

Guarantees (Chaining)
Design and Analysis

of Algorithms I

Overview of Universal Hashing

Next : details on randomized solution (in 3 parts).

Part 1 : proposed definition of a “good random hash function”.

(“universal family of hash functions”)

Tim Roughgarden

(“universal family of hash functions”)

Part 3 : concrete example of simple + practical such functions

Part 4 : justifications of definition : “good functions” lead to “good

performance”

Definition : Let H be a set of hash function from U to {0,1,2,..,n-1}

H is universal if and only if :

For all (with)

Universal Hash Functions

Tim Roughgarden

When h is chosen uniformly at random at random from H.

(i.e., collision probability as small as with “gold standard” of perfectly

random hashing)

(n = # of buckets)

Scenario : hash table implemented with chaining. Hash function h

chosen uniformly at random from universal family H.

Theorem : [Carter-Wegman 1979]

All operations run in O(1) time. (for every data set S)

Chaining: Constant-Time Guarantee

Tim Roughgarden

All operations run in O(1) time. (for every data set S)

Caveats : 1.) in expectation over the random choice of the hash

function h. (h = # of buckets)

2.) assumes |S| = O(n) [i.e., load]

3.) assumes takes O(1) time to evaluate hash function

Will analyze an unsuccessful Lookup

(other operations only faster).

So : Let S = data set with |S| = O(n)

Consider Lookup for

Proof (Part I)

of buckets

Tim Roughgarden

Consider Lookup for (arbitrary data set S)

Running Time : O(1) + O(list length in A[h(x)])

Compute

h(x)
Traverse

list

A random variable,

depends on hash

function h

L

Collision : distinct x,y in U such that h(x) = h(y).

Solution#1: (separate) chaining.

-- keep linked list in each bucket

-- given a key/object x, perform Insert/Delete/Lookup in the

A General Decomposition Principle

Tim Roughgarden

-- given a key/object x, perform Insert/Delete/Lookup in the

list in A[h(x)]

Solution#2 : open addressing. (only one object per bucket)

-- hash function now specifies probe sequence h1(x), h2(x), …

(keep trying till find open slot)

-- examples : linear probing (look consecutively), double hashing

bucket for x

linked list for x

use 2 hash functions

Let L = list length in A[h(x)].

For (so,) define

Proof (Part II)

1 if h(y) = h(x)

0 otherwise

Tim Roughgarden

Note :

So :

Recall

1 if h(y) = h(x)

0 otherwise

Let L = list length in A[h(x)].

For (so,) define

Proof (Part II)

1 if h(y) = h(x)

0 otherwise

Tim Roughgarden

Note :

So :

By definition of a universal family

of hash functions

Let L = list length in A[h(x)].

For (so,) define

Note :

Proof (Part II)

1 if h(y) = h(x)

0 otherwise

Tim Roughgarden

Note :

So :

Since H is universal

Provided |S| = O(n)

