

Design and Analysis of Algorithms I

Data Structures

Universal Hash Functions: Definition and Example

Overview of Universal Hashing

Next: details on randomized solution (in 3 parts).

Part 1 : proposed definition of a "good random hash function".
("universal family of hash functions")

Part 3: concrete example of simple + practical such functions

Part 4 : justifications of definition : "good functions" lead to "good performance"

Universal Hash Functions

<u>Definition</u>: Let H be a set of hash functions from U to {0,1,2,...,n-1}

H is universal if and only if : for all x,y in U (with $x \neq y$)

$$Pr_{h \in H}[x, y \ collide] \le \frac{1}{n}$$
 (n = # of buckets)

When h is chosen uniformly at random from H.

(i.e., collision probability as small as with "gold standard" of perfectly random hashing

Consider a hash function family H, where each hash function of H maps elements from a universe U to one of n buckets. Suppose H has the following property: for every bucket I and key k, a 1/n fraction of the hash functions in H map k to i. Is H universal?

 $\underline{\text{Yes}} : \text{Take H} = \text{all functions from U to}$

Yes, always.
{0,1,2,..,n-1}

O No, never.

No : Take H = the set of n different

- \bigcirc Maybe yes, maybe no (depends on the H). constant functions
- Only if the hash table is implemented using chaining.

Example: Hashing IP Addresses

Let U = IP addresses (of the form (x_1,x_2,x_3,x_4) , with each $x_i \in \{0,1,2,...,255\}$

Let n = a prime (e.g., small multiple of # of objects in HT)

Construction: Define one hash function ha per 4-tuple a

= (a_1,a_2,a_3,a_4) with each $a_i \in \{0,1,2,3,...,n-1\}$

<u>Define</u>: h_a: IP addrs -> buckets by

$$h_a(x_1, x_2, x_3, x_4) = \begin{pmatrix} a_1x_1 + a_2x_2 + \\ a_3x_3 + a_4x_4 \end{pmatrix} \mod n$$

A Universal Hash Function

Define:
$$H = \{h_a | a_1, a_2, a_3, a_4 \in \{0, 1, 2, ..., n-1\}\}$$

$$h_a(x_1, x_2, x_3, x_4) = \begin{pmatrix} a_1x_1 + a_2x_2 + \\ a_3x_3 + a_4x_4 \end{pmatrix} \mod n$$

Theorem: This family is universal

Proof (Part I)

Consider distinct IP addresses (x_1, x_2, x_3, x_4) , (y_1, y_2, y_3, y_4) .

Assume: $x_4 \neq y_4$

Question: collision probability?

$$(i.e., Prob_{h_a \in H}[h_a(x_1, ..., x_4) = h_a(y_1, ..., y_4)])$$

Note: collision <==>

$$a_1x_1 + a_2 + x_2 + a_3 + x_3 + a_4x_4 = a_1y_1 + a_2 + y_2 + a_3 + y_3 + a_4 + y_4 \pmod{n}$$

$$<=> a_4(x_4 - y_4) = \sum_{i=1}^{3} a_i(y_i - x_i) \pmod{n}$$

Next: condition on random choice of a_1, a_2, a_3 . (a_4 still random)

Proof (Part II)

The Story So Far: with a₁,a₂,a₃ fixed arbitrarily, how many choices of

a₄ satisfy

Key Claim: left-hand side equally likely to be any of {0,1,2,...,n-1}

Some fixed number in {0,1,2,..,n-1}

Reason: $x_4 \neq y_4$ ($x_4-y_4 \neq 0$ mod n) n is prime, a_4 uniform at random

[addendum: make sure n bigger than the maximum value of an ai]

 \rightarrow Implies Prob[h_a(x) = h_a(y)] = 1/n

<u>"Proof" by example</u>: n = 7, $x_4 - y_4 = 2$ or 3 mod n

