
Data Structures

Universal Hash Universal Hash

Functions: Motivation
Design and Analysis

of Algorithms I

Purpose : maintain a (possibly evolving) set of stuff.

(transactions, people + associated data, IP addresses, etc.)

Insert : add new record

Hash Table: Supported Operations

Using a “key”
Insert : add new record

Delete : delete existing record
easier/more common with chaining than open addressing

Lookup : check for a particular record

(a “dictionary”)

* 1. properly implemented 2. non-pathological data

Using a “key”

AMAZING

GUARANTEE

All operations in

O(1) time ! *

Resolving Collisions
Collision : distinct x,y in U such that h(x) = h(y).

Solution#1: (separate) chaining.

-- keep linked list in each bucket

-- given a key/object x, perform Insert/Delete/Lookup in the-- given a key/object x, perform Insert/Delete/Lookup in the

list in A[h(x)]

Solution#2 : open addressing. (only one object per bucket)

-- hash function now specifies probe sequence h1(x), h2(x), …

(keep trying till find open slot)

-- examples : linear probing (look consecutively), double hashing

bucket for x

linked list for x

use 2 hash functions

The Load of a Hash Table

Definition : the load factor of a hash table is

: = # of objects in hash table

of buckets of hash table

Tim Roughgarden

of buckets of hash table

Which hash table implementation strategy is feasible for load

factors larger than 1?

Both chaining and open addressing

Only chaining

Only open addressing

The Load of a Hash Table

Definition : the load factor of a hash table is

: = # of objects in hash table

of buckets of hash table

Tim Roughgarden

of buckets of hash table

Note : 1.) = O(1) is necessary condition for

operations to run in constant time.

2.) with open addressing, need << 1.

Upshot#1 : good HT performance, need to control load.

Upshot#2 : for good HT performance, need a good hash function.

Ideal : user super-clever hash function guaranteed

to spread every data set out evenly.

Problem : DOES NOT EXIST! (for every hash function, there is a

Pathological Data Sets

Tim Roughgarden

Problem : DOES NOT EXIST! (for every hash function, there is a

pathological data set)

Reason : fix a hash function h : U -> {0,1,2,…,n-1}

⇒a la Pigeonhole Principle, there exist bucket i such that at least

|u|/n elements of U hash to I under h.

⇒ if data set drawn only from these,

everything collides !

Pathological Data in the Real World

Preference : Crosby and Wallach, USENIX 2003.

Main Point : can paralyze several real-world systems (e.g.,

Tim Roughgarden

Main Point : can paralyze several real-world systems (e.g.,

network intrusion detection) by exploiting badly designed

hash functions.

-- open source

-- overly simplistic hash function

(easy to reverse engineer a pathological data set)

Solutions
1. Use a cryptographic hash function (e.g., SHA-2)

-- infeasible to reverse engineer a pathological data set

2. Use randomization. In next 2 videos

Tim Roughgarden

2. Use randomization. In next 2 videos

-- design a family H of hash functions such that for all

data sets S, “almost all” functions spread S

out “pretty evenly”.

(compare to QuickSort guarantee)

Overview of Universal Hashing

Next : details on randomized solution (in 3 parts).

Part 1 : proposed definition of a “good random hash function”.

(“universal family of hash functions”)

Tim Roughgarden

(“universal family of hash functions”)

Part 3 : concrete example of simple + practical such functions

Part 4 : justifications of definition : “good functions” lead to “good

performance”

