Data Structures
4 4

% Hash Tables: Some

Implementation Details

Design and Analysis
of Algorithms |

Hash Table: Supported Operations

Purpose : maintain a (possibly evolving) set of stuff.
(transactions, people + associated data, IP addresses, etc.)

Insert : add new record
Using a “key”

Delete : delete existing record AMAZING
GUARANTEE

. All operations in
Lookup : check for a particular record O(1) time ! *

(a “dictionary”)

* 1. properly implemented 2. non-pathological data

Tim Roughgarden

High-Level Idea

Setup : universe U [e.g., all IP addresses, all

g

Naive Solutions

names, all chessboard configurations, etc.] 1.

[generally, REALLY BIG]

|

Goal : want to maintain evolving set S C U
[generally, of reasonable size]

Solution : 1.) pick n = # of “buckets” with D

(for simplicity assume |S| doesn’t vary much)
2.) choose a hash function »: U — {0,1,2,...,n— 1}
3.) use array A of length n, store x in A[h(x)]

Array-based
solution

[indexed by u]

- O(1) operations
but 0(|U|) space
List —based
solution

- 0(]S|) space but
0(|S]) Lookup

Tim Roughgarden

Consider » people with random birthdays (i.e., with each day of
the year equally likely). How large does » need to be before there
is at least a 50% chance that two people have the same birthday?

50 %
O 23 BIRTHDAY
99 % OxX”
O 57 «pARAD

O 184 99.99...%

O3675— 100%

Resolving Collisions

Collision: distinct ©,¥ € U such that h(z) = h(y) \\ —
| - Wl G
Solution # 1 : (separate) chaining / b daics

-keep linked list in each bucket &
- given a key/object x, perform Insert/Delete/Lookup in
the list inZA[h X)]
Linked list for x
Solution #2 : open addressing. (only one object per bucket)
-Hash function now specifies probe sequence h,(x),h,(x),..

(keep trying till find open slot) Use 2 hash functions

: : : A :

- Examples : linear probing (look consecutively), double hashing

Bucket for x

Tim Roughgarden

What Makes a Good Hash Function?

Note : in hash table with chaining, Insertis 6(1) L?;iitof;elgt?:JAe[C;(i)a]t
0(list length) for Insert/Delete. ual-length lists

could be anywhere from/m/n|to m forimlobjects Al
Point : performance depends on the choice of hw objects in
(analogous situation with open addressing) ket

Properties of a “Good” Hash function

1. Should lead to good performance =>i.e., should “spread
data out” (gold standard — completely random hashing)

2. Should be easy to store/ very fast to evaluate.

Tim Roughgarden

Bad Hash Functions

Example : keys = phone numbers (10-digits). lu| = 10%°
-Terrible hash function : h(x) = 1°* 3 digits of x choose n =103
(i.e., area code)
- mediocre hash function : h(x) = last 3 digits of x
[still vulnerable to patterns in last 3 digits]

Example : keys = memory locations. (will be multiples of a power of 2)

-Bad hash function : h(x) = x mod 1000 (again n = 103)
=> All odd buckets guaranteed to be empty.

Tim Roughgarden

Quick-and-Dirty Hash Functions

5 Sukes,
RN £ e D &
b\m “hash _ty ”comparison\ 02y w\Y

code” function\’
e.g., subroutine to convert like the mod n
strings to integers function

How to choose n = # of buckets

1. Choose n to be a prime (within constant factor of # of objects in
table)

2. Not too close to a power of 2

3. Not too close to a power of 10

Tim Roughgarden

