Graph Primitives

4 4

% Dijkstra’s Algorithm:

Fast Implementation

Design and Analysis
of Algorithms |



Single-Source Shortest Paths

Input: directed graph G=(V, E). (m=|E|, n=|V| )
* each edge has non negative length 1,

* source vertex s
Length of path

= sum of edge lengths
Output: for each v €V ,compute

\
L(v) := length of a shortest s-v path in G @) 0\1;03/’0

Assumption: Path length = 6

1. [for convenience] Vv € V,3s = v path
2. [important]ie > 0 Ve € E

Tim Roughgarden



This array
only to help
explanation!

Initialize:
=/[s] [vertices processed so far]
* A{s] =0 [computed shortest path distances]
€ Brsl — empt” path |eemp”ted Sh :|_t5 El
—paths}-

Main Loop
* while X#V:

v,
¥ DS

,Ff

-need to grow
x by one node

Dijkstra’s Algorithm

Main Loop cont’d:

o among all edges (v,w) € E
with v € X, w ¢ X,
pick the one that minimizes
Alv]H+ low

[call it (v, w™*)]

e add w* to X
* set 4[11 ] Alv*] + Ly e

Tim Roughgarden



Which of the following running times seems to best describe a
“naive” implementation of Dijkstra’s algorithm?

* (n-1) 1terations of while loop

© mtn) * §(m) work per iteration
O @(mlogn) [ 8(1) work per edge]
O a(n12)

CAN WE DO BETTER?



Heap Operations

Recall: raison d’€tre of heap = perform Insert, Extract-Min in O(log n) time.
[rest of video assumes familiarity with heaps] |
Height ~ log,n

* conceptually, a perfectly balanced binary tree

*Heap property: at every node, key <= children’s keys
* extract-min by swapping up last leaf, bubbling down
* insert via bubbling up

Also: will need ability to delete from middle of heap. (bubble up or down as
needed)

Tim Roughgarden



Two Invariants e

Invariant # 1: elements in heap =
vertices of V-X.

Invariant #2: forv ¢ X

Key[v] = smallest Dijstra greedy
score of an edge (u, v) in E with v
in X

(of 4o 1f no such edges exist)

of (v, w) :
Alv] +L,,

/"\
X N —X
Point: by invariants, Extract-

Min yields correct vertex w* to
add to X next.

(and we set A[w*] to key[w™*] )

Tim Roughgarden



Maintaining the Invariants

To maintain Invariant #2: [1.e., that vv ¢ X Needto
Key[v] = smallest Dijkstra greedy wpdate key!
score of edge (u,v) with u in X ] \

When w extracted from heap (i.e., added to X) _» )
* for each edge (w,v) in E: e CAOOK pew V=R

cTOSSm%

*if vin V-X (1.e., in heap) .
(- delete v from heap

oojate | ¢ recompute key[v] = min{key[v], A[w] + 1, }
* re-Insert v into heap ™

Greedy score of (w,v)

Tim Roughgarden



Running Time Analysis

You check: dominated by heap operations. (O(log(n)) each )
* (n-1) Extract mins

* cach edge (v,w) triggers at most one Delete/Insert combo
(if v added to X first)

\J
# of heap operations in O(n+m) & O(m) \f. a E

nning time = O(m log(n)) (like\sorting) Y. L

So:-
So:ru

Since graph is
weakly connected

Tim Roughgarden



