

Design and Analysis of Algorithms I

Graph Primitives

Correctness of Kosaraju's Algorithm

Example Recap

Observation

<u>Claim</u>: the SCCs of a directed graph G induce an acyclic "meta-graph":

-- meta-nodes = the SCCs $C_1,...,C_k$ of G

$$-\exists \ arc \ C \to \hat{C} <=> \exists \ arc \ \Box(i,j) \in G$$
$$with \ i \in C, \ j \in \hat{C}$$

Why acyclic?: a cycle of SCCs would collapse into one.

What how are the SCC of the original graph G and its reversal G1rev related?

- O In general, they are unrelated.
- \bigcirc Every SCC of G is contained in an SCC of $G \uparrow rev$, but the converse need not hold.
- \bigcirc Every SCC of $G \upharpoonright rev$ is contained in an SCC of G, but the converse need not
- O They are exactly the same.

Key Lemma

Lemma: consider two "adjacent" SCCs in G:

Let f(v) = finishing times of DFS-Loop in Grev

Then: $\max_{v \in C_1} f(v) < \max_{v \in C_2} f(v)$

Corollary: maximum f-value of G must lie in a "sink SCC"

Correctness Intuition

(see notes for formal proof)

By Corollary: 2nd pass of DFS-Loop begins somewhere in a sink SCC C*.

- ⇒First call to DFS discovers C* and nothing else!
- ⇒Rest of DFS-Loop like recursing on G with C* deleted

[starts in a sink node of G-C*]

⇒ successive calls to DFS(G,i) "peel off" the SCCs one by one

[in reverse topological order of the "meta-graph" of SCCs]

Case 1 Proof of Key Lemma

In Grev:

 $\max_{v \in C_1} f(v) < \max_{v \in C_2} f(v)$

Let $v = 1^{st}$ node of $C_1 \cup C_2$ Still SCCs (of Grev) [by Quiz]

reached by 1st pass of DFS-Loop (on Grev)

Case 1 [$v \in C_1$] : all of C_1 explored before C_2 ever reached.

<u>Reason</u>: no paths from C_1 to C_2 (since meta-graph is acyclic)

 \Rightarrow All f-values in C₁ less than all f-values in C₂

Case 2 [$v \in C_2$] : DFS(Grev, v) won't finish until all of $C_1 \cup C_2$ completely explored => f(v) > f(w) for all w in C_1