Graph Primitives

i S

% Depth-First Search

Design and Analysis
of Algorithms |

Overview and Example |

M- 0
Depth-First Search (DFS) : explore aggressively, ')
only backtrack when necessary. N

-- also computes a topological ordering of a directed acyclic graph
-- and strongly connected components of directed graphs

Run Time : O(m+n)

Tim Roughgarden

The Code

Exercise : mimic BFS code, use a stack instead of a queue [+
some other minor modifications]

Recursive version : DFS(graph G, start vertex s)
-- mark s as explored
-- for every edge (s,v) :
-- if v unexplored
-- DFS(G,v)

Tim Roughgarden

Basic DFS Properties

Claim #1 : at the end of the algorithm, v marked as explored
<==> there exists a path fromstovinG.

Reason : particular instantiation of generic search procedure

Claim #2 : running time is O(n.+m,),
where n_ = # of nodes reachable from s
m, = # of edges reachable from s

Reason : looks at each node in the connected component of s
at most once, each edge at most twice.

Tim Roughgarden

Application: Topological Sort

Definition : A topological ordering of a directed /@\

graph G is a labeling f of G’s nodes such that: @\5(/®
\".¥}

1. The f(v)’s are the set {1,2,..,n}

2. (u,0) € G=> f(u) < f(v) ——
Motivation : sequence tasks while respecting T N

all precedence constraints.

Note : G has directed cycle => no topological ordering

Theorem : no directed cycle => can compute
topological ordering in O(m+n) time.

Tim Roughgarden

Straightforward Solution

Note : every directed acyclic graph has a sink vertex.

(/O
Reason : if not, can keep following outgoing arcs \>

to produce a directed cycle.
O/DT/

To compute topological ordering :
-- let v be a sink vertex of G

-- setf(v)=n Why does it work? : when v is assigned to

-- recurse on G-{v} position i, all outgoing arcs already
deleted => all lead to later vertices in

ordering.

Tim Roughgarden

Topological Sort via DFS (Slick)

DFS-Loop (graph G)
-- mark all nodes unexplored

-- current-label = n [to keep track of
ordering]

-- for each vertex

- if v not yet eXplored [in previous
DFS call]

-- DFS(G,v)

DFS(graph G, start vertex s)
-- for every edge (s,v)
-- if v not yet explored
-- mark v explored
-- DFS(G,v)
-- set f(s) = current_label
-- current_label = current_label-1

—/gs\ =\ $=%
7 Ll =H

LNz

Topological Sort via DFS (con’d)

Running Time : O(m+n).

Reason : O(1) time per node, O(1) time per edge.
Correctness : need to show that if (u,v) is an edge,
then f(u) < f(v) @ P

N4 (since no
directed cycles)

Case 1 : u visited by DFS before v => recursive call
corresponding to v finishes before that of u (since DFS).
=f(v) > f(u)

Case 2 : v visited before u => Vv’s recursive call finishes before
u’s even starts. => f(v) > f(u) Q.E.D.

Tim Roughgarden

