Graph Primitives

4 4

% Breadth-First Search

Design and Analysis
of Algorithms |

Overview and Example
Breadth-First Search (BFS) /@-«(f}%—z)
Fd D

-- explore nodes in “layers”

-- can compute shortest paths

-- connected components of
undirected graph

Run time : O(m+n) [linear time]

Tim Roughgarden

The Code

BFS (graph G, start vertex s)
[all nodes initially unexplored]
-- mark s as explored

-- let Q = queue data structure (FIFO), initialized with s

- while @ # ¢ :

-- remove the first node of Q, call it v

O(1)
time

-- for each edge(v,w) :
-- if w unexplored
--mark w as explored

-- add w to Q (at the end)
g.\ @ﬁ@

Tim Roughgarden

Basic BFS Properties

Claim #1 : at the end of BFS, v explored <==>
G has a path from s to v.

Reason : special case of the generic algorithm

Claim #2 : running time of main while loop
= O(n+m,), where n_ = # of nodes reachable from s
m, = # of edges reachable from s

Reason : by inspection of code.

Tim Roughgarden

Application: Shortest Paths

Goal : compute dist(v), the fewest # of edges on -

path from s to v. WAV ®
Extra code : initialize dist(v) =/ 0 ifv=s @Q 3

o fv# s
-When considering edge (v,w) :
- if w unexplored, then set dist(w) = dist(v) + 1
Claim : at termination dist(v) =i <==> vinith layer
(i.e., shortest s-v path has i edges)
Proof Idea : every layer i node w is added to Q by a layer
(i-1) node v via the edge (v,w)

Tim Roughgarden

Application: Undirected Connectivit

Let G = (V,E) be an undirected graph.
Connected components = the “pieces” of G.
Formal Definition : equivalence classes of
the relation u<->v <==> there exists u-v path
in G. [check: <-> is an equivalence relation]

Goal : compute all connected components
Why? - check if network is disconnected @' >

- graph visualisation - clustering

Tim Roughgarden

Connected Components via BFS

To compute all components : (undirected case)

-- initalize all nodes as unexplored O(n)
[assume labelled 1 to n | (n)
—fori=1ton O(n)
-- if i not yet explored [in some previous BFS]
-- BFS(G,i) [discovers precisely i’s
connected component |
Note : finds every connected component.
Running time : O(m#n)_ O(1) per

per edge in
node each BFS

2\ £
;;M
(344 O us
'y e
Z —D

@%%
N\

Q {

&y W\

Tim Roughgarden

