Graph Primitives

i S

% Introduction to
Graph Search

Design and Analysis
of Algorithms |

A Few Motivations

1. Check if a network is connected (can get to anywhere from
. anywhere else)

Bacon
number=2\ L

2. Driving directions
3. Formulate a plan [e.g., how to fill in a Sudoku puzzle]

-- nodes = a partially completed puzzle --arcs =filling in one
new sequence
4. Compute the “pieces” (or “components”) of a graph
-- clustering, structure of the Web graph, etc.

Tim Roughgarden

Generic Graph Search

Goals : 1) find everything findable from a given |
start vertex Goal-
2) don’t explore anything twice 0(m+n) time

Generic Algorithm (given graph G, vertex s)

-- initially s explored, all other vertices

unexplored

-- while possible : (if none, halt)
-- choose an edge (u,v) with u explored
and v unexplored
-- mark v explored

§

Tim Roughgarden

Generic Graph Search (con’d)

Claim : at end of the algorithm, v explored <==> G has a path from
undirected or directed) stov

(G
Proof : (=>) easy induction on number of iterations (you check)
(<=) By contradiction. Suppose G has a path P from s to v:
o " WD
(9/ \o/o /\o/ unexplored
explored
But v unexplored at end of the algorithm. Then there exists an

edge (u,x) in P with u explored and x unexplored.
But then algorithm would not have terminated, contradiction. Q.E.D.

Tim Roughgarden

BFS vs. DFS

Note : how to choose among the

Breadth-First Search (BFS) explored Croc unexplored
— ; - rossin
-- explored nodes in “layers O(.mm)hme d :
using a queue edges
-- can compute shortest paths (FIFO)

-- can compute connected components of an undirected graph
O(m+n) time using a stack (LIFO)

Depth-First Search (DFS) (or via recursion)

-- explore aggressively like a maze, backtrack only when necessary

-- compute topological ordering of a directed acyclic graph

-- compute connected components in directed graphs

Tim Roughgarden

