
Graph Algorithms Representing Graphs

Design and Analysis of Algorithms I

Graphs

Two ingredients

- <u>Vertices</u> aka nodes (V)
- <u>Edges</u> (E) = pairs of vertices
 - can be <u>undirected</u> [unordered pair] or <u>directed</u> [ordered pair] (aka <u>arcs</u>)

<u>Examples</u>: road networks, the Web, social networks, precedence constraints, etc.

Consider an undirected graph that has n vertices, no parallel edges, and is connected (i.e., "in one piece"). What is the minimum and maximum number of edges that the graph could have, respectively ?

$$\bigcirc n - 1 \text{ and } n(n-1)/2$$

$$\bigcirc n - 1 \text{ and } n^2$$

$$\bigcirc n \text{ and } 2^n$$

$$\bigcirc n \text{ and } n^n$$

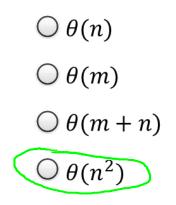
Tei ve

Sparse vs. Dense Graphs

Let $\underline{n} = \#$ of vertices, $\underline{m} = \#$ of edges.

In most (but not all) applications, m is $\Omega(n)$ and $O(n^2)$

- in a "sparse" graph, m is or is close to O(n)
- in a "dense" graph, m is closer to $\theta(n^2)$

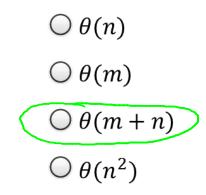

The Adjacency Matrix

Represent G by a n x n 0-1 matrix A where $A_{ij} = 1 \Leftrightarrow G$ has an i-j edge $\bigcirc \bigcirc \bigcirc$

Variants
•
$$A_{ij} = \#$$
 of i-j edges (if parallel edges)
• $A_{ij} =$ weight of i-j edge (if any)
• $A_{ij} = \begin{bmatrix} +1 \text{ if } \bigcirc \bigcirc \bigcirc \\ -1 \text{ if } \bigcirc \bigcirc \bigcirc \end{bmatrix}$

Ter ver

How much space does an adjacency matrix require, as a function of the number n of vertices and the number m of edges?


Adjacency Lists

Ingredients

- array (or list) of vertices
- array (or list) of edges
- each edge points to its endpoints
- each vertex points to edges incident on it

Ter ver

How much space does an adjacency list representation require, as a function of the number n of vertices and the number m of edges?

Adjacency Lists

Ingredients		<u>Space</u>
• array (or list) of vertices		heta(n)
• array (or list) of edges	one-to-one correspondence !	heta(m)
• each edge points to its endpoints		heta(m)
• each vertex points to edges incident of	n it	heta(m)
Question: which is better? Answer: depends on graph density and openeeded. This course: focus on adjacency lists.	erations [or	$\frac{\theta(m+n)}{\theta(max\{m,n\})}$