

Probability Review

Part II

Design and Analysis of Algorithms I

Topics Covered

- Conditional probability
- Independence of events and random variables
 See also:
- Lehman-Leighton notes (free PDF)
- Wikibook on Discrete Probability

Concept #1 – Sample Spaces

Sample Space Ω : "all possible outcomes" [in algorithms, Ω is usually finite]

<u>Also</u> : each outcome $i \in \Omega$ has a probability p(i) >= 0

Constraint:
$$\sum_{i \in \Omega} p(i) = 1$$

An event is a subset $\,S\subseteq\Omega\,$

The probability of an event S is $\sum_{i \in S} p(i)$

Concept #6 – Conditional Probability Let $X, Y \subseteq \Omega$ be events. Then $Pr[X|Y] = \frac{Pr[X \cap Y]}{Pr[Y]}$ ("X given Y")

Tei ve

Suppose you roll two fair dice. What is the probability that at least one die is a 1, given that the sum of the two dice is 7?

X = at least one die is a 1
Y = sum of two dice = 7
Y = sum of two dice = 7
= {(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)}
=> X \cap Y = {(1,6), (6,1)}
Pr[X|Y] =
$$\frac{Pr[X \cap Y]}{Pr[Y]} = \frac{(2/36)}{(6/36)} = \frac{1}{3}$$

Concept #7 – Independence (of Events)

<u>Definition</u>: Events $X, Y \subseteq \Omega$ are independent if (and only if) $Pr[X \cap Y] = Pr[X] \cdot Pr[Y]$

<u>You check</u> : this holds if and only if Pr[X | Y] = Pr[X] <==> Pr[Y|X] = Pr{Y]

<u>WARNING</u> : can be a very subtle concept. (intuition is often incorrect!)

Independence (of Random Variables)

<u>Definition</u> : random variables A, B (both defined on Ω) are independent if and only if the events Pr[A=1], Pr[B=b] are independent for all a,b. [<==> Pr[A = a and B = b] = Pr[A=z]*Pr[B=b]]

<u>Claim</u> : if A,B are independent, then E[AB] = E[A]*E[B]

$$\underline{\mathsf{Proof}}: \quad E[AB] = \sum_{a,b} (a \cdot b) \cdot \Pr[A = a \text{ and } B = b]$$

$$= \sum_{a,b} (a \cdot b) \cdot \Pr[A = a] \cdot \Pr[B = b] \quad \text{(Since A, B independent)}$$

$$\mathbf{E}[\mathbf{A}] \xleftarrow{a,b} = \underbrace{\left[\sum_{a} a \cdot \Pr[A = a]\right]}_{b} \underbrace{\left[\sum_{b} b \cdot \Pr[B = b]\right]}_{b} \mathbf{E}[\mathbf{B}]$$

$$\mathbf{Q} \cdot \mathbf{E} \cdot \mathbf{Q}$$

$$\mathsf{Tim Roughgarden}$$

formally : $\Omega = \{000, 101, 011, 110\}$, each equally likely.

<u>Claim</u> : X_1 and X_3 are independent random variables (you check)

<u>Claim</u> : X_1X_3 and X_2 are not independent random variables.

 $\underbrace{ \begin{array}{c} \underline{Proof} : \text{suffices to show that} \\ E[X_1X_2X_3] \neq E[X_1X_3]E[X_2] \\ \underbrace{Proof}_{=0} \\ E[X_1X_2X_3] = E[X_1]E[X_3] = 1/4 \end{array} } \underbrace{ \begin{array}{c} \underline{Since X_1 \text{ and } X_3} \\ \underline{Since X_1 \text{ and } X_3}$