-\ ¢ . Master Method
Proof (Part Il)

f

Design and Analysis
of Algorithms |

The Story So Far/Case 1 -1+

rﬁ/ all j
Total work: < cn® X Zlogb "(J (*)

j=0
If a=0b% then

(%) = en®(log, n + 1)

= O(n%logn)
[end Case 1]

Tim Roughgarden

Basic Sums Fact

For 7 # 1, we have

rk+l 1
l4+r+r24+r3+ .. +rF = -
/r‘ —_
Proof : by induction (you check)
Upshot: 1 Independent of k
1. Ifr<1is constant, RHS is <= =3 cons

l.e., 15t term of sum dominates
2. If r>1 is constant, RHS is <= P
, last term of sum dominates

Tim Roughgarden

Total work: < cn? x ()
If a<?b® [RSP < RWS] SR
_ O(nd) (independent of n)

[by basic sums fact |

[total work dominated by top level]

Total work: < cn® x(Y. (%)
If a>b* [RSP> RWS])
<= constant
— d & \logyn largest term

Note b—dlogbn _ (blogbn)—d _ n—d
SO : (*) — O(alogbn)

Tim Roughgarden

Level O >ﬁ>< a children
5 .

o S e Q

Tel
ve

Level 1

log, n
Level log,n # of leaves =G P

Which of the following quantities is equal to al°8»"?

O The number of levels of the recursion tree.
O The number of nodes of the recursion tree.
O The number of edges of the recursion tree.

O The number of leaves of the recursion tree.

Case 3 continued

Total work: < cn® X Zlogb n(—)/ ™)
So : O(a'°8 ™) = O(# leaves)

1 1 More intuitive
O n O
NOte Sb =X’ Sb S ——simpler to apply

[Since (log, n)(log, a) = (log, a)(log, n)]
[End Case 3]

Tim Roughgarden

The Master Method

If T(n) < aT (g) + 0(n%)

then

T(n) = -

"0(n%logn) ifa= b
0(n%) ifa < b

0 (n'°8p @) ifa > b?

(Case 1)
(Case 2)
(Case 3)

Tim Roughgarden

