

Design and Analysis of Algorithms I

Master Method

Proof (Part II)

The Story So Far/Case 1 = 1 for

Total work:
$$\leq cn^d \times \sum_{j=0}^{\log_b n} \binom{a}{b^d} j$$
 (*)
$$If \quad a = b^d, \ then$$

$$(*) = cn^d (\log_b n + 1)$$

$$= O(n^d \log n)$$

[end Case 1]

Basic Sums Fact

For $r \neq 1$, we have

$$1 + r + r^2 + r^3 + \dots + r^k = \frac{r^{k+1} - 1}{r - 1}$$

Proof: by induction (you check)

Upshot:

Independent of k

- 1. If r<1 is constant, RHS is <= $\frac{1}{1-r}$ = a constant l.e., 1st term of sum dominates
- 2. If r>1 is constant, RHS is $<= r^k \cdot (1 + \frac{1}{r-1})$.

 l.e., last term of sum dominates

Tim Roughgarden

Case 2

Total work:
$$\leq cn^d \times \left(\sum_{j=0}^{\log_b n} \binom{a}{b^d}\right)^j$$
If $a < b^d [RSP < RWS]$

$$= O(n^d)$$

>><= a constant
 (independent of n)
 [by basic sums fact]</pre>

[total work dominated by top level]

Case 3

Total work:
$$\leq cn^d \times \sum_{j=0}^{\log_b n} {\binom{a}{b^d}}$$

If
$$a > b^d$$
 $[RSP > RWS]$

$$(*) = O(n^d \cdot (\frac{a}{b^d})^{\log_b n})$$

$$Note: b^{-d\log_b n} = (b^{\log_b n})^{-d} = n^{-d}$$

$$So: (*) = O(a^{\log_b n})$$

Tim Roughgarden

 $_{\pi}$:= r > 1

4<= constant *</pre>

largest term

Level 0

Level 1

a children

of leaves = $a^{\log_b n}$

Tei ve

Level log_bn

Which of the following quantities is equal to $a^{\log_b n}$?

- O The number of levels of the recursion tree.
- O The number of nodes of the recursion tree.
- O The number of edges of the recursion tree.
- \bigcirc The number of leaves of the recursion tree.

Case 3 continued

Total work:
$$\leq cn^d \times \sum_{j=0}^{\log_b n} (\frac{a}{b^d})^j$$
 (*)
$$So: (*) = O(a^{\log_b n}) = O(\# \ leaves)$$

$$Note: a^{\log_b n} = n^{\log_b a} \text{More intuitive Simpler to apply}$$

$$[Since (\log_b n)(\log_b a) = (\log_b a)(\log_b n)]$$
[End Case 3]

The Master Method

If
$$T(n) \le aT\left(\frac{n}{b}\right) + O(n^d)$$

then

$$T(n) = \begin{cases} O(n^d \log n) & \text{if } a = b^d \text{ (Case 1)} \\ O(n^d) & \text{if } a < b^d \text{ (Case 2)} \\ O(n^{\log_b a}) & \text{if } a > b^d \text{ (Case 3)} \end{cases}$$