

Design and Analysis of Algorithms I

Master Method Proof (Part II)

The Story So Far/Case 1

Total work:
$$\leq cn^d \times \sum_{j=0}^{\log_b n} \binom{a}{b^d}^j$$
 (*)

Then

 $(*) = Cn^d (\log_b n + 1)$
 $= O(n^d \log n)$

(end (oxi)

Tim Roughgarden

Basic Sums Fact

For call we have Proof: by induction (you check). Upshot:

Difficulties constant, 5 1-1 (ie, let ein & sum dominates) Diffolis constant, AKS is & rk. [1+ (ie, last term of sum dominates)

Tim Roughgarden

Case 3

Total work:
$$\leq cn^d \times \left(\sum_{j=0}^{\log_b n} \binom{a}{b^d}\right)^j$$
 (*)

level 0

a children

Which of the following quantities is equal to $a^{\log_b n}$?

- O The number of levels of the recursion tree.
- The number of nodes of the recursion tree.
- O The number of edges of the recursion tree.
- ightharpoonup The number of leaves of the recursion tree.

Case 3 continued

Total work:
$$\leq cn^d \times \sum_{j=0}^{\log_b n} (\frac{a}{b^d})^j$$
 (*)

So: $(*)^2 \circ (a^{\log_b n}) = 0$ (# lawes)

Note: $(a \circ b) = (\log_b n) \circ (\log_b n) \circ$

Tim Roughgarden

The Master Method

If
$$T(n) \le aT\left(\frac{n}{b}\right) + O(n^d)$$

then

$$T(n) = \begin{cases} O(n^d \log n) & \text{if } a = b^d \text{ (Case 1)} \\ O(n^d) & \text{if } a < b^d \text{ (Case 2)} \\ O(n^{\log_b a}) & \text{if } a > b^d \text{ (Case 3)} \end{cases}$$